↓ Skip to main content

Task Inhibition and Response Inhibition in Older vs. Younger Adults: A Diffusion Model Analysis

Overview of attention for article published in Frontiers in Psychology, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Task Inhibition and Response Inhibition in Older vs. Younger Adults: A Diffusion Model Analysis
Published in
Frontiers in Psychology, November 2016
DOI 10.3389/fpsyg.2016.01722
Pubmed ID
Authors

Stefanie Schuch

Abstract

Differences in inhibitory ability between older (64-79 years, N = 24) and younger adults (18-26 years, N = 24) were investigated using a diffusion model analysis. Participants performed a task-switching paradigm that allows assessing n-2 task repetition costs, reflecting inhibitory control on the level of tasks, as well as n-1 response-repetition costs, reflecting inhibitory control on the level of responses. N-2 task repetition costs were of similar size in both age groups. Diffusion model analysis revealed that for both younger and older adults, drift rate parameters were smaller in the inhibition condition relative to the control condition, consistent with the idea that persisting task inhibition slows down response selection. Moreover, there was preliminary evidence for task inhibition effects in threshold separation and non-decision time in the older, but not the younger adults, suggesting that older adults might apply different strategies when dealing with persisting task inhibition. N-1 response-repetition costs in mean RT were larger in older than younger adults, but in mean error rates tended to be larger in younger than older adults. Diffusion-model analysis revealed longer non-decision times in response repetitions than response switches in both age groups, consistent with the idea that motor processes take longer in response repetitions than response switches due to persisting response inhibition of a previously executed response. The data also revealed age-related differences in overall performance: Older adults responded more slowly and more accurately than young adults, which was reflected by a higher threshold separation parameter in diffusion model analysis. Moreover, older adults showed larger non-decision times and higher variability in non-decision time than young adults, possibly reflecting slower and more variable motor processes. In contrast, overall drift rate did not differ between older and younger adults. Taken together, diffusion model analysis revealed differences in overall performance between the age groups, as well as preliminary evidence for age differences in dealing with task inhibition, but no evidence for an inhibitory deficit in older age.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 50 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 22%
Student > Bachelor 6 12%
Researcher 5 10%
Student > Master 5 10%
Student > Doctoral Student 3 6%
Other 7 14%
Unknown 14 27%
Readers by discipline Count As %
Psychology 21 41%
Neuroscience 6 12%
Nursing and Health Professions 1 2%
Agricultural and Biological Sciences 1 2%
Computer Science 1 2%
Other 3 6%
Unknown 18 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2016.
All research outputs
#20,349,664
of 22,896,955 outputs
Outputs from Frontiers in Psychology
#24,258
of 30,021 outputs
Outputs of similar age
#265,060
of 306,446 outputs
Outputs of similar age from Frontiers in Psychology
#360
of 418 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 30,021 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 306,446 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 418 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.