↓ Skip to main content

Time-Dependent Effects of Acute Exercise on University Students’ Cognitive Performance in Temperate and Cold Environments

Overview of attention for article published in Frontiers in Psychology, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Time-Dependent Effects of Acute Exercise on University Students’ Cognitive Performance in Temperate and Cold Environments
Published in
Frontiers in Psychology, July 2017
DOI 10.3389/fpsyg.2017.01192
Pubmed ID
Authors

Ling-Yu Ji, Xiao-Ling Li, Yang Liu, Xiu-Wen Sun, Hui-Fen Wang, Long Chen, Liang Gao

Abstract

Background: Few studies have examined the acute exercise-induced changes in cognitive performance in different thermal environments and the time course effects. Objective: Investigate the time-dependent effects of acute exercise on university students' processing speed, working memory and cognitive flexibility in temperate and cold environments. Method: Twenty male university students (age 23.5 ± 2.0 years) with moderate physical activity level participated in a repeated-measures within-subjects design. Processing speed, working memory and cognitive flexibility were assessed using CogState test battery at baseline (BASE), followed by a 45-min rest (REST), immediately after (EX) and 30 min after (POST-EX) 30-min moderate-intensity treadmill running in both temperate (TEMP; 25°C) and cold (COLD; 10°C) environments. Mean skin temperature (MST) and thermal sensation (TS) were also recorded. Two-way repeated measures ANOVA was performed to analyze each variable. Spearman's rho was used to identify the correlations between MST, TS and cognitive performance. Results: Reaction time (RT) of processing speed and working memory decreased immediately after exercise in both conditions (processing speed: p = 0.003; working memory: p = 0.007). The facilitating effects on processing speed disappeared within 30 min after exercise in TEMP (p = 0.163) and COLD (p = 0.667), while improvements on working memory remained 30 min after exercise in TEMP (p = 0.047), but not in COLD (p = 0.663). Though RT of cognitive flexibility reduced in both conditions (p = 0.003), no significance was found between EX and REST (p = 0.135). Increased MST and TS were significantly associated with reductions in processing speed RT (MST: r = -0.341, p < 0.001; TS: r = -0.262, p = 0.001) and working memory RT (MST: r = -0.282, p < 0.001; TS: r = -0.2229, p = 0.005), and improvements in working memory accuracy (MST: r = 0.249, p = 0.002; TS: r = 0.255, p = 0.001). Conclusion: The results demonstrate different time-dependent effects of acute exercise on cognition in TEMP and COLD. Our study reveals facilitating effects of exercise on university students' processing speed and working memory in both environments. However, in contrast to TEMP, effects on working memory in COLD are transient.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 19%
Student > Bachelor 10 17%
Student > Ph. D. Student 6 10%
Student > Doctoral Student 5 8%
Student > Postgraduate 3 5%
Other 6 10%
Unknown 18 31%
Readers by discipline Count As %
Sports and Recreations 10 17%
Psychology 9 15%
Medicine and Dentistry 7 12%
Nursing and Health Professions 4 7%
Neuroscience 3 5%
Other 5 8%
Unknown 21 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2017.
All research outputs
#13,326,031
of 22,988,380 outputs
Outputs from Frontiers in Psychology
#12,596
of 30,186 outputs
Outputs of similar age
#153,970
of 312,615 outputs
Outputs of similar age from Frontiers in Psychology
#318
of 583 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 30,186 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,615 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 583 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.