↓ Skip to main content

Pragmatically Framed Cross-Situational Noun Learning Using Computational Reinforcement Models

Overview of attention for article published in Frontiers in Psychology, January 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pragmatically Framed Cross-Situational Noun Learning Using Computational Reinforcement Models
Published in
Frontiers in Psychology, January 2018
DOI 10.3389/fpsyg.2018.00005
Pubmed ID
Authors

Shamima Najnin, Bonny Banerjee

Abstract

Cross-situational learning and social pragmatic theories are prominent mechanisms for learning word meanings (i.e., word-object pairs). In this paper, the role of reinforcement is investigated for early word-learning by an artificial agent. When exposed to a group of speakers, the agent comes to understand an initial set of vocabulary items belonging to the language used by the group. Both cross-situational learning and social pragmatic theory are taken into account. As social cues, joint attention and prosodic cues in caregiver's speech are considered. During agent-caregiver interaction, the agent selects a word from the caregiver's utterance and learns the relations between that word and the objects in its visual environment. The "novel words to novel objects" language-specific constraint is assumed for computing rewards. The models are learned by maximizing the expected reward using reinforcement learning algorithms [i.e., table-based algorithms: Q-learning, SARSA, SARSA-λ, and neural network-based algorithms: Q-learning for neural network (Q-NN), neural-fitted Q-network (NFQ), and deep Q-network (DQN)]. Neural network-based reinforcement learning models are chosen over table-based models for better generalization and quicker convergence. Simulations are carried out using mother-infant interaction CHILDES dataset for learning word-object pairings. Reinforcement is modeled in two cross-situational learning cases: (1) with joint attention (Attentional models), and (2) with joint attention and prosodic cues (Attentional-prosodic models). Attentional-prosodic models manifest superior performance to Attentional ones for the task of word-learning. The Attentional-prosodic DQN outperforms existing word-learning models for the same task.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 27%
Student > Bachelor 3 9%
Researcher 3 9%
Student > Master 3 9%
Student > Doctoral Student 2 6%
Other 4 12%
Unknown 9 27%
Readers by discipline Count As %
Psychology 8 24%
Computer Science 4 12%
Linguistics 3 9%
Arts and Humanities 2 6%
Unspecified 1 3%
Other 3 9%
Unknown 12 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 January 2018.
All research outputs
#15,487,739
of 23,015,156 outputs
Outputs from Frontiers in Psychology
#18,960
of 30,265 outputs
Outputs of similar age
#269,626
of 440,306 outputs
Outputs of similar age from Frontiers in Psychology
#400
of 529 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 30,265 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,306 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 529 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.