↓ Skip to main content

Postural Effects on the Mental Rotation of Body-Related Pictures: An fMRI Study

Overview of attention for article published in Frontiers in Psychology, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Postural Effects on the Mental Rotation of Body-Related Pictures: An fMRI Study
Published in
Frontiers in Psychology, May 2018
DOI 10.3389/fpsyg.2018.00720
Pubmed ID
Authors

Fangbing Qu, Jianping Wang, Yuan Zhong, Haosheng Ye

Abstract

This study investigated the embodied effects involved in the mental rotation of pictures of body parts (hands and feet). Blood oxygen level-dependent (BOLD) signals were collected from 18 healthy volunteers who performed mental rotation tasks of rotated drawings of hands under different arm postures. Congruent drawings of hands (those congruent with left-hand posture) evoked stronger activation in the left supplementary motor area (SMA), left precentral gyrus, and left superior parietal lobule (SPL) than did incongruent drawings of hands. Congruent drawings of hands (those congruent with right-hand posture) evoked significant activation in the left inferior parietal lobule (IPL), right SMA, bilateral middle frontal gyrus (MFG), left inferior frontal gyrus (IFG), and bilateral superior frontal gyrus (SFG) compared to that evoked by the incongruent drawings of hands. Similar methodology was implemented with drawings of feet. However, no significant differences in brain activation were observed between congruent and incongruent drawings of feet. This finding suggests that body posture influences body part-related mental rotation in an effector-specific manner. A direct comparison between the medially and laterally rotated drawings revealed activation in the right IPL, left precentral gyrus, bilateral IFG, and bilateral SFG. These results suggest that biomechanical constraints affect the cognitive process of mental rotation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 19%
Student > Ph. D. Student 4 15%
Student > Postgraduate 3 12%
Student > Doctoral Student 2 8%
Student > Master 2 8%
Other 5 19%
Unknown 5 19%
Readers by discipline Count As %
Psychology 11 42%
Neuroscience 3 12%
Medicine and Dentistry 2 8%
Linguistics 1 4%
Arts and Humanities 1 4%
Other 2 8%
Unknown 6 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 May 2018.
All research outputs
#14,389,551
of 23,045,021 outputs
Outputs from Frontiers in Psychology
#15,296
of 30,353 outputs
Outputs of similar age
#186,997
of 330,190 outputs
Outputs of similar age from Frontiers in Psychology
#440
of 658 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 30,353 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,190 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 658 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.