↓ Skip to main content

Occurrence of Hybrid Escherichia coli Strains Carrying Shiga Toxin and Heat-Stable Toxin in Livestock of Bangladesh

Overview of attention for article published in Frontiers in Public Health, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Occurrence of Hybrid Escherichia coli Strains Carrying Shiga Toxin and Heat-Stable Toxin in Livestock of Bangladesh
Published in
Frontiers in Public Health, January 2017
DOI 10.3389/fpubh.2016.00287
Pubmed ID
Authors

Fatema-Tuz Johura, Rozina Parveen, Atiqul Islam, Abdus Sadique, Niaz Rahim, Shirajum Monira, Anisur R. Khan, Sunjukta Ahsan, Makoto Ohnishi, Haruo Watanabe, Subhra Chakraborty, Christine M. George, Alejandro Cravioto, Armando Navarro, Badrul Hasan, Munirul Alam

Abstract

Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) are important causes of diarrhea in humans and animals worldwide. Although ruminant animals are the main source of STEC, diarrhea due to this pathotype is very low in Bangladesh where ETEC remains the predominant group associated with childhood diarrhea. In the present study, E. coli strains (n = 35) isolated from Bangladesh livestock (goats, sheep, and cattle) and poultry (chicken and ducks) were analyzed for the presence of major virulence factors, such as Shiga toxins (STX-1 and STX-2), heat-labile toxin, and heat-stable toxins (STa and STb). Multiplex polymerase chain reaction results revealed 23 (66%) E. coli strains to be virulent possessing either sta (n = 5), stx (stx1, n = 8; stx2, n = 2), or both (n = 8) genes in varying combinations. Thirty-four percent (8/23) of strains from livestock were hybrid type that carried both stx (either stx1 or stx2) and ETEC-specific enterotoxin gene sta. Serotyping results revealed that the ETEC strains belonged to five serotypes, namely O36:H5, O174:H-, O152:H8, O109:H51, and O8:H21, while the STEC-producing strains belonged to serotypes O76:H19 (n = 3), O43:H2 (n = 2), O87:H16 (n = 2), OR:H2 (n = 1), O110:H16 (n = 1), and O152:H8 (n = 1). The STEC-ETEC hybrid strains belonged to serotypes O76:H19 (n = 3), O43:H2 (n = 2), O87:H16, OR:H2, and O152:H8. Forty percent (2/5) of the ETEC and 20% (2/10) of the STEC strains were multidrug resistant with the highest drug resistance (50%) being found in the hybrid strains. Molecular fingerprinting determined by pulsed-field gel electrophoresis and cluster analyses by dendrogram revealed that, genetically, STEC-ETEC hybrid strains were highly heterogeneous. Multidrug-resistant E. coli STEC-ETEC hybrid strains in domesticated animals pose a public health threat for humans in Bangladesh.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 76 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 24%
Student > Bachelor 11 14%
Student > Master 9 12%
Student > Ph. D. Student 8 11%
Student > Postgraduate 5 7%
Other 13 17%
Unknown 12 16%
Readers by discipline Count As %
Immunology and Microbiology 13 17%
Agricultural and Biological Sciences 13 17%
Biochemistry, Genetics and Molecular Biology 12 16%
Medicine and Dentistry 7 9%
Environmental Science 5 7%
Other 10 13%
Unknown 16 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2019.
All research outputs
#15,423,393
of 22,931,367 outputs
Outputs from Frontiers in Public Health
#4,583
of 10,078 outputs
Outputs of similar age
#257,120
of 421,326 outputs
Outputs of similar age from Frontiers in Public Health
#44
of 63 outputs
Altmetric has tracked 22,931,367 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,078 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.0. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,326 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.