↓ Skip to main content

Environmental Toxin Screening Using Human-Derived 3D Bioengineered Liver and Cardiac Organoids

Overview of attention for article published in Frontiers in Public Health, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Citations

dimensions_citation
86 Dimensions

Readers on

mendeley
115 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Environmental Toxin Screening Using Human-Derived 3D Bioengineered Liver and Cardiac Organoids
Published in
Frontiers in Public Health, April 2018
DOI 10.3389/fpubh.2018.00103
Pubmed ID
Authors

Steven D. Forsythe, Mahesh Devarasetty, Thomas Shupe, Colin Bishop, Anthony Atala, Shay Soker, Aleksander Skardal

Abstract

Environmental toxins, such as lead and other heavy metals, pesticides, and other compounds, represent a significant health concern within the USA and around the world. Even in the twenty-first century, a plethora of cities and towns in the U.S. have suffered from exposures to lead in drinking water or other heavy metals in food or the earth, while there is a high possibility of further places to suffer such exposures in the near future. We employed bioengineered 3D human liver and cardiac organoids to screen a panel of environmental toxins (lead, mercury, thallium, and glyphosate), and charted the response of the organoids to these compounds. Liver and cardiac organoids were exposed to lead (10 µM-10 mM), mercury (200 nM-200 µM), thallium (10 nM-10 µM), or glyphosate (25 µM-25 mM) for a duration of 48 h. The impacts of toxin exposure were then assessed by LIVE/DEAD viability and cytotoxicity staining, measuring ATP activity and determining IC50 values, and determining changes in cardiac organoid beating activity. As expected, all of the toxins induced toxicity in the organoids. Both ATP and LIVE/DEAD assays showed toxicity in both liver and cardiac organoids. In particular, thallium was the most toxic, with IC50 values of 13.5 and 1.35 µM in liver and cardiac organoids, respectively. Conversely, glyphosate was the least toxic of the four compounds, with IC50 values of 10.53 and 10.85 mM in liver and cardiac organoids, respectively. Additionally, toxins had a negative influence on cardiac organoid beating activity as well. Thallium resulting in the most significant decreases in beating rate, followed by mercury, then glyphosate, and finally, lead. These results suggest that the 3D organoids have significant utility to be deployed in additional toxicity screening applications, and future development of treatments to mitigate exposures. 3D organoids have significant utility to be deployed in additional toxicity screening applications, such as future development of treatments to mitigate exposures, drug screening, and environmental toxin detection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 115 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 115 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 20 17%
Student > Ph. D. Student 18 16%
Researcher 15 13%
Student > Master 7 6%
Student > Doctoral Student 6 5%
Other 9 8%
Unknown 40 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 22 19%
Pharmacology, Toxicology and Pharmaceutical Science 9 8%
Engineering 9 8%
Agricultural and Biological Sciences 6 5%
Neuroscience 5 4%
Other 18 16%
Unknown 46 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2018.
All research outputs
#13,075,788
of 23,043,346 outputs
Outputs from Frontiers in Public Health
#2,794
of 10,314 outputs
Outputs of similar age
#144,369
of 296,868 outputs
Outputs of similar age from Frontiers in Public Health
#70
of 106 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,314 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 10.0. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,868 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 106 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.