↓ Skip to main content

Hydrothermally Treated Chitosan Hydrogel Loaded with Copper and Zinc Particles as a Potential Micronutrient-Based Antimicrobial Feed Additive

Overview of attention for article published in Frontiers in Veterinary Science, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hydrothermally Treated Chitosan Hydrogel Loaded with Copper and Zinc Particles as a Potential Micronutrient-Based Antimicrobial Feed Additive
Published in
Frontiers in Veterinary Science, November 2015
DOI 10.3389/fvets.2015.00062
Pubmed ID
Authors

Parthiban Rajasekaran, Swadeshmukul Santra

Abstract

Large-scale use of antibiotics in food animal farms as growth promoters is considered as one of the driving factors behind increasing incidence of microbial resistance. Several alternatives are under investigation to reduce the amount of total antibiotics used in order to avoid any potential transmission of drug resistant microbes to humans through food chain. Copper sulfate and zinc oxide salts are used as feed supplement as they exhibit antimicrobial properties in addition to being micronutrients. However, higher dosage of copper and zinc (often needed for growth promoting effect) to animals is not advisable because of potential environmental toxicity arising from excreta. Innovative strategies are needed to utilize the complete potential of trace minerals as growth promoting feed supplements. To this end, we describe here the development and preliminary characterization of hydrothermally treated chitosan as a delivery vehicle for copper and zinc nanoparticles that could act as a micronutrient-based antimicrobial feed supplement. Material characterization studies showed that hydrothermal treatment makes a chitosan hydrogel that rearranged to capture the copper and zinc metal particles. Systemic antimicrobial assays showed that this chitosan biopolymer matrix embedded with copper (57.6 μg/ml) and zinc (800 μg/ml) reduced the load of model gut bacteria (target organisms of growth promoting antibiotics), such as Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and Lactobacillus fermentum under in vitro conditions. Particularly, the chitosan/copper/zinc hydrogel exhibited significantly higher antimicrobial effect against L. fermentum, one of the primary targets of antibiotic growth promoters. Additionally, the chitosan matrix ameliorated the cytotoxicity levels of metal supplements when screened against a murine macrophage cell line RAW 264.7 and in TE-71, a murine thymic epithelial cell line. In this proof-of-concept study, we show that by using chitosan as a delivery platform, micronutrient-based metal feed additives could be used to minimize the undesirable levels of microbial population without causing significant cytotoxic effect under in vitro conditions. These findings provide the platform for further studies in target animal models to quantify the required physiological concentrations of copper and zinc when delivered via a chitosan hydrogel platform to elicit a growth promoting effect without causing any toxicity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Italy 1 2%
Unknown 58 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 15%
Student > Master 7 12%
Student > Bachelor 6 10%
Student > Ph. D. Student 5 8%
Student > Postgraduate 3 5%
Other 9 15%
Unknown 20 34%
Readers by discipline Count As %
Chemistry 10 17%
Veterinary Science and Veterinary Medicine 6 10%
Agricultural and Biological Sciences 5 8%
Biochemistry, Genetics and Molecular Biology 3 5%
Chemical Engineering 3 5%
Other 11 19%
Unknown 21 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2015.
All research outputs
#18,430,915
of 22,833,393 outputs
Outputs from Frontiers in Veterinary Science
#4,119
of 6,204 outputs
Outputs of similar age
#278,523
of 386,225 outputs
Outputs of similar age from Frontiers in Veterinary Science
#23
of 36 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,204 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 386,225 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.