↓ Skip to main content

A Fast and Inexpensive Protocol for Empirical Verification of Neutralizing Epitopes in Microbial Toxins and Enzymes

Overview of attention for article published in Frontiers in Veterinary Science, June 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Fast and Inexpensive Protocol for Empirical Verification of Neutralizing Epitopes in Microbial Toxins and Enzymes
Published in
Frontiers in Veterinary Science, June 2017
DOI 10.3389/fvets.2017.00091
Pubmed ID
Authors

Christine N. Vuong, Wen-Ko Chou, Vivek A. Kuttappan, Billy M. Hargis, Lisa R. Bielke, Luc R. Berghman

Abstract

In vivo targeting of peptides to antigen-presenting cells by use of agonistic anti-CD40 monoclonal antibodies has been used successfully as an immune response enhancing strategy. When tested in chickens, the antibody-guided platform was capable of inducing specific IgG production within 1 week postimmunization. However, use of this method beyond its initial conception as a vaccine delivery tool has not been fully exploited. In this study, Clostridium perfringens alpha-toxin was used as a model microbial toxin for epitope mapping by using the antibody-guided immunization method to generate a panel of antibodies against specific, regions of the toxin in an attempt to identify crucial determinants on the toxin which, once bound, would hinder downstream toxicity. Alpha-toxin, which possesses both hemolytic and phospholipase C (PLC) enzymatic activities, has long been known to be one of the key destructive etiological agents of necrotic enteritis disease in poultry. Previous attempts to identify crucial antigenic determinants on the toxin mediating its enzymatic activities have been performed using expensive and labor-intensive site-directed mutagenesis techniques. To create a panel of antibodies, 23 short candidate alpha-toxin peptide regions were selected in silico using B-cell epitope prediction algorithms in the public domain and were custom synthesized to load onto the antibody-guided complex for immunization in birds for antisera production. Peptide-specific antibody responses were generated against all candidate neutralizing epitopes and used for in vitro toxin neutralization tests. Antisera against all 23 peptides were able to neutralize the toxin's hemolytic activity, with neutralization titers ranging from 80 to 320, but none were effective in blocking PLC. The novel approach of antibody-guided immunization introduces a new, inexpensive method for polyclonal IgG production and de facto identification of neutralizing epitopes in microbial toxins and enzymes within 2 weeks from in silico analysis of a putative target sequence.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 2 22%
Student > Ph. D. Student 2 22%
Researcher 2 22%
Professor 1 11%
Student > Bachelor 1 11%
Other 0 0%
Unknown 1 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 44%
Veterinary Science and Veterinary Medicine 2 22%
Immunology and Microbiology 1 11%
Chemistry 1 11%
Unknown 1 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2017.
All research outputs
#20,713,549
of 23,313,051 outputs
Outputs from Frontiers in Veterinary Science
#5,507
of 6,529 outputs
Outputs of similar age
#277,171
of 318,350 outputs
Outputs of similar age from Frontiers in Veterinary Science
#59
of 59 outputs
Altmetric has tracked 23,313,051 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,529 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,350 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.