↓ Skip to main content

Combination of Cloxacillin and Essential Oil of Melaleuca armillaris as an Alternative Against Staphylococcus aureus

Overview of attention for article published in Frontiers in Veterinary Science, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
3 X users
googleplus
1 Google+ user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Combination of Cloxacillin and Essential Oil of Melaleuca armillaris as an Alternative Against Staphylococcus aureus
Published in
Frontiers in Veterinary Science, August 2018
DOI 10.3389/fvets.2018.00177
Pubmed ID
Authors

Daniel Buldain, Andrea V. Buchamer, María L. Marchetti, Florencia Aliverti, Arnaldo Bandoni, Nora Mestorino

Abstract

The emergence of resistance to antibiotics has been favored by abuse in the application of antimicrobials in human and animal medicine. Essential oils are a great resource to deal with this crisis. Melaleuca armillaris belongs to the family of Myrtaceae, rich in species with essential oils. Plant extracts has shown antimicrobial activity in many investigations. Cloxacillin (CLOX) is an antibiotic widely used in veterinary medicine against Staphylococcus aureus. Our aim was to assess pharmacodynamic interaction established by combining essential oil of M. armillaris (EO) with CLOX in search of a synergistic effect that maximizes the antibacterial activity against S. aureus. The EO was obtained by steam distillation and its composition was analyzed by a GC-FID-MS. The most abundant components in the EO were 1.8 cineole (72.3%), limonene (7.8%). and α-pinene (6%). We worked with wild type S. aureus strains (n = 3) isolated from Holstein cows, and S. aureus ATCC 29213 as the reference strain. The Minimum Inhibitory Concentration (MIC) of CLOX, EO and the combination was determined by microdilution in broth at pH 7.4; 6.5 and 5.0. The checkerboard method was applied to evaluate the interaction between CLOX and EO. The Fractional Inhibitory Concentration index (FIC) was established. From those combinations that yielded the lowest FIC values, we evaluated the index of antibacterial activity (E), established as the difference between the Log10 values of the number of viable bacteria at the initial (nt0) and at the end of the test (nt24). So, time-killing curves with CLOX and EO/CLOX combination at 0.5, 1, 2, 4, and 8 fold the MIC in broth at pH 7.4; 6.5 and 5.0 were prepared. We considered Bacteriostatic effect (E = 0) Bactericidal effect (E = -3) and Effect of virtual eradication of bacteria (E = -4). A clear synergic activity between the EO and the CLOX was demonstrated, which allows reducing the MIC of β-lactam against S. aureus. This interaction was favored by acidification of the medium, where lower concentrations of CLOX achieved a bactericidal effect, close to virtual eradication, in the presence of small amounts of EO.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 12%
Student > Bachelor 9 12%
Student > Master 7 9%
Student > Postgraduate 5 6%
Student > Doctoral Student 4 5%
Other 9 12%
Unknown 34 44%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 18%
Pharmacology, Toxicology and Pharmaceutical Science 7 9%
Biochemistry, Genetics and Molecular Biology 5 6%
Veterinary Science and Veterinary Medicine 4 5%
Chemistry 3 4%
Other 10 13%
Unknown 34 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2018.
All research outputs
#13,623,794
of 23,098,660 outputs
Outputs from Frontiers in Veterinary Science
#1,918
of 6,392 outputs
Outputs of similar age
#169,754
of 331,122 outputs
Outputs of similar age from Frontiers in Veterinary Science
#44
of 93 outputs
Altmetric has tracked 23,098,660 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,392 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,122 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 93 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.