↓ Skip to main content

Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature

Overview of attention for article published in Frontiers in Plant Science, July 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
63 Dimensions

Readers on

mendeley
96 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature
Published in
Frontiers in Plant Science, July 2016
DOI 10.3389/fpls.2016.01026
Pubmed ID
Authors

William W. Adams, Jared J. Stewart, Christopher M. Cohu, Onno Muller, Barbara Demmig-Adams

Abstract

Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature - most strongly in Col-0 and least strongly in the Italian ecotype - and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross-sectional areas increased linearly with decreasing precipitation level in the habitats of origin in response to experimental growth at high temperature. This represents a situation where temperature acclimation of the apparent capacity for water flux through the xylem and transpiration rate in a winter annual responded differently from that of photosynthetic capacity, in contrast to previous reports of strong relationships between hydraulic conductance and photosynthesis in other studies.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 95 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 16 17%
Student > Ph. D. Student 14 15%
Researcher 13 14%
Student > Bachelor 9 9%
Student > Doctoral Student 5 5%
Other 15 16%
Unknown 24 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 43 45%
Biochemistry, Genetics and Molecular Biology 14 15%
Environmental Science 6 6%
Engineering 3 3%
Nursing and Health Professions 1 1%
Other 5 5%
Unknown 24 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2016.
All research outputs
#20,336,031
of 22,881,154 outputs
Outputs from Frontiers in Plant Science
#16,162
of 20,270 outputs
Outputs of similar age
#319,937
of 365,439 outputs
Outputs of similar age from Frontiers in Plant Science
#399
of 505 outputs
Altmetric has tracked 22,881,154 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,270 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 365,439 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 505 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.