↓ Skip to main content

Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis

Overview of attention for article published in Frontiers in oncology, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
65 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis
Published in
Frontiers in oncology, January 2013
DOI 10.3389/fonc.2012.00199
Pubmed ID
Authors

Jérome Doyen, Scott K. Parks, Serge Marcié, Jacques Pouysségur, Johanna Chiche

Abstract

The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases (CA) IX and CAXII constitute a robust intracellular pH (pH(i))-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibroblasts cells (-/+ CAIX) and LS174Tr cells (inducible knock-down for ca9/ca12) were analyzed for cell cycle phase distribution and survival after irradiation in extracellular pH(o) manipulations and hypoxia (1% O(2)) exposure. Radiotherapy was used to target ca9/ca12-silenced LS174Tr tumors grown in nude mice. We found that diminishing the pH(i)-regulating capacity of fibroblasts through inhibition of Na(+)/H(+) exchanger 1 sensitize cells to radiation-induced cell death. Secondly, the pH(i)-regulating function of CAIX plays a key protective role in irradiated fibroblasts in an acidic environment as accompanied by a reduced number of cells in the radiosensitive phases of the cell cycle. Thirdly, we demonstrate that irradiation of LS174Tr spheroids, silenced for either ca9 or both ca9/ca12, showed a respective 50 and 75% increase in cell death as a result of a decrease in cell number in the radioresistant S phase and a disruption of CA-mediated pH(i) regulation. Finally, LS174Tr tumor progression was strongly decreased when ca9/ca12 silencing was combined with irradiation in vivo. These findings highlight the combinatory use of radiotherapy with targeting of the pH(i)-regulating CAs as an anti-cancer strategy.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 2%
Unknown 46 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 28%
Researcher 11 23%
Student > Bachelor 7 15%
Student > Master 4 9%
Student > Doctoral Student 3 6%
Other 5 11%
Unknown 4 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 32%
Biochemistry, Genetics and Molecular Biology 8 17%
Medicine and Dentistry 7 15%
Pharmacology, Toxicology and Pharmaceutical Science 5 11%
Chemistry 3 6%
Other 4 9%
Unknown 5 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2013.
All research outputs
#22,760,732
of 25,374,917 outputs
Outputs from Frontiers in oncology
#15,919
of 22,416 outputs
Outputs of similar age
#258,419
of 289,007 outputs
Outputs of similar age from Frontiers in oncology
#194
of 328 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,416 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 289,007 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 328 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.