↓ Skip to main content

Clustering of disulfide-rich peptides provides scaffolds for hit discovery by phage display: application to interleukin-23

Overview of attention for article published in BMC Bioinformatics, November 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Clustering of disulfide-rich peptides provides scaffolds for hit discovery by phage display: application to interleukin-23
Published in
BMC Bioinformatics, November 2016
DOI 10.1186/s12859-016-1350-9
Pubmed ID
Authors

David T. Barkan, Xiao-li Cheng, Herodion Celino, Tran T. Tran, Ashok Bhandari, Charles S. Craik, Andrej Sali, Mark L. Smythe

Abstract

Disulfide-rich peptides (DRPs) are found throughout nature. They are suitable scaffolds for drug development due to their small cores, whose disulfide bonds impart extraordinary chemical and biological stability. A challenge in developing a DRP therapeutic is to engineer binding to a specific target. This challenge can be overcome by (i) sampling the large sequence space of a given scaffold through a phage display library and by (ii) panning multiple libraries encoding structurally distinct scaffolds. Here, we implement a protocol for defining these diverse scaffolds, based on clustering structurally defined DRPs according to their conformational similarity. We developed and applied a hierarchical clustering protocol based on DRP structural similarity, followed by two post-processing steps, to classify 806 unique DRP structures into 81 clusters. The 20 most populated clusters comprised 85% of all DRPs. Representative scaffolds were selected from each of these clusters; the representatives were structurally distinct from one another, but similar to other DRPs in their respective clusters. To demonstrate the utility of the clusters, phage libraries were constructed for three of the representative scaffolds and panned against interleukin-23. One library produced a peptide that bound to this target with an IC50 of 3.3 μM. Most DRP clusters contained members that were diverse in sequence, host organism, and interacting proteins, indicating that cluster members were functionally diverse despite having similar structure. Only 20 peptide scaffolds accounted for most of the natural DRP structural diversity, providing suitable starting points for seeding phage display experiments. Through selection of the scaffold surface to vary in phage display, libraries can be designed that present sequence diversity in architecturally distinct, biologically relevant combinations of secondary structures. We supported this hypothesis with a proof-of-concept experiment in which three phage libraries were constructed and panned against the IL-23 target, resulting in a single-digit μM hit and suggesting that a collection of libraries based on the full set of 20 scaffolds increases the potential to identify efficiently peptide binders to a protein target in a drug discovery program.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 20%
Researcher 8 20%
Student > Ph. D. Student 6 15%
Student > Master 4 10%
Other 3 7%
Other 6 15%
Unknown 6 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 22%
Agricultural and Biological Sciences 8 20%
Chemistry 8 20%
Engineering 3 7%
Medicine and Dentistry 2 5%
Other 4 10%
Unknown 7 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 August 2017.
All research outputs
#17,828,338
of 22,903,988 outputs
Outputs from BMC Bioinformatics
#5,954
of 7,305 outputs
Outputs of similar age
#286,267
of 415,120 outputs
Outputs of similar age from BMC Bioinformatics
#81
of 117 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,305 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,120 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 117 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.