↓ Skip to main content

Differential Functionality of Right and Left Parietal Activity in Controlling a Motor Vehicle

Overview of attention for article published in Frontiers in Systems Neuroscience, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential Functionality of Right and Left Parietal Activity in Controlling a Motor Vehicle
Published in
Frontiers in Systems Neuroscience, December 2016
DOI 10.3389/fnsys.2016.00106
Pubmed ID
Authors

Justin R. Brooks, Javier O. Garcia, Scott E. Kerick, Jean M. Vettel

Abstract

Driving a motor vehicle is an inherently complex task that requires robust control to avoid catastrophic accidents. Drivers must maintain their vehicle in the middle of the travel lane to avoid high speed collisions with other traffic. Interestingly, while a vehicle's lane deviation (LD) is critical, studies have demonstrated that heading error (HE) is one of the primary variables drivers use to determine a steering response, which directly controls the position of the vehicle in the lane. In this study, we examined how the brain represents the dichotomy between control/response parameters (heading, reaction time (RT), and steering wheel corrections) and task-critical parameters (LD). Specifically, we examined electroencephalography (EEG) alpha band power (8-13 Hz) from estimated sources in right and left parietal regions, and related this activity to four metrics of driving performance. Our results demonstrate differential task involvement between the two hemispheres: right parietal activity was most closely related to LD, whereas left parietal activity was most closely related to HE, RT and steering responses. Furthermore, HE, RT and steering wheel corrections increased over the duration of the experiment while LD did not. Collectively, our results suggest that the brain uses differential monitoring and control strategies in the right and left parietal regions to control a motor vehicle. Our results suggest that the regulation of this control changes over time while maintaining critical task performance. These results are interpreted in two complementary theoretical frameworks: the uncontrolled manifold and compensatory control theories. The central tenet of these frameworks permits performance variability in parameters (i.e., HE, RT and steering) so far as it does not interfere with critical task execution (i.e., LD). Our results extend the existing research by demonstrating potential neural substrates for this phenomenon which may serve as potential targets for brain-computer interfaces that predict poor driving performance.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 25%
Researcher 5 16%
Lecturer 3 9%
Student > Master 3 9%
Student > Postgraduate 2 6%
Other 3 9%
Unknown 8 25%
Readers by discipline Count As %
Neuroscience 6 19%
Engineering 5 16%
Psychology 4 13%
Nursing and Health Professions 1 3%
Social Sciences 1 3%
Other 3 9%
Unknown 12 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 January 2017.
All research outputs
#13,420,684
of 22,912,409 outputs
Outputs from Frontiers in Systems Neuroscience
#742
of 1,345 outputs
Outputs of similar age
#210,179
of 420,807 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#18
of 28 outputs
Altmetric has tracked 22,912,409 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,345 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,807 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.