↓ Skip to main content

An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces

Overview of attention for article published in Frontiers in Neuroscience, December 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces
Published in
Frontiers in Neuroscience, December 2016
DOI 10.3389/fnins.2016.00587
Pubmed ID
Authors

Simin Li, Jie Li, Zheng Li

Abstract

Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 6%
United Kingdom 1 2%
Unknown 49 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 36%
Researcher 7 13%
Student > Bachelor 6 11%
Student > Master 6 11%
Student > Doctoral Student 3 6%
Other 7 13%
Unknown 5 9%
Readers by discipline Count As %
Engineering 19 36%
Neuroscience 7 13%
Agricultural and Biological Sciences 4 8%
Computer Science 3 6%
Sports and Recreations 3 6%
Other 11 21%
Unknown 6 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 December 2016.
All research outputs
#19,944,994
of 25,374,647 outputs
Outputs from Frontiers in Neuroscience
#8,669
of 11,542 outputs
Outputs of similar age
#304,398
of 422,547 outputs
Outputs of similar age from Frontiers in Neuroscience
#105
of 156 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,547 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 156 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.