↓ Skip to main content

Combinatorial brain decoding of people's whereabouts during visuospatial navigation

Overview of attention for article published in Frontiers in Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Combinatorial brain decoding of people's whereabouts during visuospatial navigation
Published in
Frontiers in Neuroscience, January 2013
DOI 10.3389/fnins.2013.00078
Pubmed ID
Authors

Hans P. Op de Beeck, Ben Vermaercke, Daniel G. Woolley, Nicole Wenderoth

Abstract

Complex behavior typically relies upon many different processes which are related to activity in multiple brain regions. In contrast, neuroimaging analyses typically focus upon isolated processes. Here we present a new approach, combinatorial brain decoding, in which we decode complex behavior by combining the information which we can retrieve from the neural signals about the many different sub-processes. The case in point is visuospatial navigation. We explore the extent to which the route travelled by human subjects (N = 3) in a complex virtual maze can be decoded from activity patterns as measured with functional magnetic resonance imaging. Preliminary analyses suggest that it is difficult to directly decode spatial position from regions known to contain an explicit cognitive map of the environment, such as the hippocampus. Instead, we were able to indirectly derive spatial position from the pattern of activity in visual and motor cortex. The non-spatial representations in these regions reflect processes which are inherent to navigation, such as which stimuli are perceived at which point in time and which motor movement is executed when (e.g., turning left at a crossroad). Highly successful decoding of routes followed through the maze was possible by combining information about multiple aspects of navigation events across time and across multiple cortical regions. This "proof of principle" study highlights how visuospatial navigation is related to the combined activity of multiple brain regions, and establishes combinatorial brain decoding as a means to study complex mental events that involve a dynamic interplay of many cognitive processes.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Germany 1 2%
Argentina 1 2%
Unknown 39 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 21%
Student > Master 7 17%
Researcher 6 14%
Professor 3 7%
Professor > Associate Professor 3 7%
Other 5 12%
Unknown 9 21%
Readers by discipline Count As %
Psychology 11 26%
Engineering 6 14%
Agricultural and Biological Sciences 6 14%
Neuroscience 4 10%
Linguistics 1 2%
Other 5 12%
Unknown 9 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2013.
All research outputs
#14,771,845
of 25,374,647 outputs
Outputs from Frontiers in Neuroscience
#6,002
of 11,538 outputs
Outputs of similar age
#168,050
of 288,991 outputs
Outputs of similar age from Frontiers in Neuroscience
#121
of 246 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 288,991 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 246 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.