↓ Skip to main content

Targeting potassium channels for increasing delivery of imaging agents and therapeutics to brain tumors

Overview of attention for article published in Frontiers in Pharmacology, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Targeting potassium channels for increasing delivery of imaging agents and therapeutics to brain tumors
Published in
Frontiers in Pharmacology, January 2013
DOI 10.3389/fphar.2013.00062
Pubmed ID
Authors

Divya Khaitan, Nagendra S. Ningaraj

Abstract

Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/capillaries that form the blood-brain barrier not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB). Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells (ECs). In this study, we validated the non-invasive and clinically relevant dynamic contrast enhancing-magnetic resonance imaging (DCE-MRI) method with invasive, clinically irrelevant but highly accurate quantitative autoradiography method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa) channel activator NS-1619. Our results show that human gliomas and brain tumor ECs that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents' delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 6%
Unknown 17 94%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 3 17%
Student > Ph. D. Student 3 17%
Student > Bachelor 3 17%
Student > Doctoral Student 2 11%
Lecturer 1 6%
Other 5 28%
Unknown 1 6%
Readers by discipline Count As %
Medicine and Dentistry 6 33%
Agricultural and Biological Sciences 2 11%
Immunology and Microbiology 2 11%
Unspecified 1 6%
Psychology 1 6%
Other 5 28%
Unknown 1 6%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 May 2013.
All research outputs
#20,194,150
of 22,711,242 outputs
Outputs from Frontiers in Pharmacology
#9,922
of 15,939 outputs
Outputs of similar age
#248,752
of 280,736 outputs
Outputs of similar age from Frontiers in Pharmacology
#92
of 167 outputs
Altmetric has tracked 22,711,242 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 15,939 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,736 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 167 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.