↓ Skip to main content

Exploring imidazo[4,5-g]quinoline-4,9-dione derivatives as Acinetobacter baumannii efflux pump inhibitor: an in silico approach

Overview of attention for article published in Journal of Biomolecular Structure and Dynamics, November 2023
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exploring imidazo[4,5-g]quinoline-4,9-dione derivatives as Acinetobacter baumannii efflux pump inhibitor: an in silico approach
Published in
Journal of Biomolecular Structure and Dynamics, November 2023
DOI 10.1080/07391102.2023.2279287
Pubmed ID
Authors

Pownraj Brindangnanam, Krishnan Ashokkumar, Sriraghavan Kamaraj, Mohane Selvaraj Coumar

Abstract

Antimicrobial resistance (AMR) is fast becoming a medical crisis affecting the entire global population. World Health Organization (WHO) statistics show that globally 0.7 million people are dying yearly due to the emergence of AMR. By 2050, the expected number of lives lost will be 10 million per year. Acinetobacter baumannii is a dreadful nosocomial pathogen that has developed multidrug resistance (MDR) to several currently prescribed antibiotics worldwide. Overexpression of drug efflux transporters (DETs) is one of the mechanisms of multidrug resistance (MDR) in Acinetobacter baumannii. Therefore, blocking the DET can raise the efficacy of the existing antibiotics by increasing their residence time inside the bacteria. In silico screening of five synthetic compounds against three drug efflux pump from A. baumannii has identified KSA5, a novel imidazo[4,5-g]quinoline-4,9-dione derivative, to block the efflux of antibiotics. Molecular docking and simulation results showed that KSA5 could bind to adeB, adeG, and adeJ by consistently interacting with ligand-binding site residues. KSA5 has a higher binding free energy and a lower HOMO-LUMO energy gap than PAβN, suggesting a better ability to interact and inhibit DETs. Further analysis showed that KSA5 is a drug-like molecule with optimal physicochemical and ADME properties. Hence, KSA5 could be combined with antibiotics to overcome antimicrobial resistance.Communicated by Ramaswamy H. Sarma.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 33%
Student > Ph. D. Student 1 33%
Researcher 1 33%
Readers by discipline Count As %
Unspecified 1 33%
Biochemistry, Genetics and Molecular Biology 1 33%
Chemistry 1 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 November 2023.
All research outputs
#22,206,527
of 24,778,793 outputs
Outputs from Journal of Biomolecular Structure and Dynamics
#1,950
of 2,659 outputs
Outputs of similar age
#138,805
of 174,945 outputs
Outputs of similar age from Journal of Biomolecular Structure and Dynamics
#41
of 79 outputs
Altmetric has tracked 24,778,793 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,659 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 174,945 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 79 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.