↓ Skip to main content

Modeling Pancreatic Endocrine Cell Adaptation and Diabetes in the Zebrafish

Overview of attention for article published in Frontiers in endocrinology, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modeling Pancreatic Endocrine Cell Adaptation and Diabetes in the Zebrafish
Published in
Frontiers in endocrinology, January 2017
DOI 10.3389/fendo.2017.00009
Pubmed ID
Authors

Lisette A. Maddison, Wenbiao Chen

Abstract

Glucose homeostasis is an important element of energy balance and is conserved in organisms from fruit fly to mammals. Central to the control of circulating glucose levels in vertebrates are the endocrine cells of the pancreas, particularly the insulin-producing β-cells and the glucagon producing α-cells. A feature of α- and β-cells is their plasticity, an ability to adapt, in function and number as a response to physiological and pathophysiological conditions of increased hormone demand. The molecular mechanisms underlying these adaptive responses that maintain glucose homeostasis are incompletely defined. The zebrafish is an attractive model due to the low cost, high fecundity, and amenability to genetic and compound screens, and mechanisms governing the development of the pancreatic endocrine cells are conserved between zebrafish and mammals. Post development, both β- and α-cells of zebrafish display plasticity as in mammals. Here, we summarize the studies of pancreatic endocrine cell adaptation in zebrafish. We further explore the utility of the zebrafish as a model for diabetes, a relevant topic considering the increase in diabetes in the human population.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 26%
Student > Bachelor 9 17%
Student > Doctoral Student 4 7%
Professor 3 6%
Researcher 3 6%
Other 9 17%
Unknown 12 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 31%
Medicine and Dentistry 7 13%
Agricultural and Biological Sciences 7 13%
Pharmacology, Toxicology and Pharmaceutical Science 4 7%
Neuroscience 3 6%
Other 3 6%
Unknown 13 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 March 2019.
All research outputs
#16,051,091
of 25,377,790 outputs
Outputs from Frontiers in endocrinology
#3,938
of 13,018 outputs
Outputs of similar age
#242,032
of 422,426 outputs
Outputs of similar age from Frontiers in endocrinology
#25
of 68 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,018 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,426 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 68 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.