↓ Skip to main content

Comparison of Cognitive Change after Working Memory Training and Logic and Planning Training in Healthy Older Adults

Overview of attention for article published in Frontiers in Aging Neuroscience, February 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

news
1 news outlet
twitter
6 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
150 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparison of Cognitive Change after Working Memory Training and Logic and Planning Training in Healthy Older Adults
Published in
Frontiers in Aging Neuroscience, February 2017
DOI 10.3389/fnagi.2017.00039
Pubmed ID
Authors

Vina M. Goghari, Linette Lawlor-Savage

Abstract

Recent attention has focused on the benefits of cognitive training in healthy adults. Many commercial cognitive training programs are available given the attraction of not only bettering one's cognitive capacity, but also potentially preventing age-related declines, which is of particular interest to older adults. The issue of whether cognitive training can improve performance within cognitive domains not trained (i.e., far transfer) is controversial, with meta-analyses of cognitive training both supporting and falsifying this claim. More support is present for the near transfer (i.e., transfer in cognitive domain trained) of cognitive training; however, not in all studies. To date, no studies have compared working memory training to training higher-level processes themselves, namely logic and planning. We studied 97 healthy older adults above the age of 65. Healthy older adults completed either an 8-week web-based cognitive training program on working memory or logic and planning. An additional no-training control group completed two assessments 8-weeks apart. Participants were assessed on cognitive measures of near and far transfer, including working memory, planning, reasoning, processing speed, verbal fluency, cognitive flexibility, and creativity. Participants improved on the trained tasks from the first day to last day of training. Bayesian analyses demonstrated no near or far transfer effects after cognitive training. These results support the conclusion that performance-adaptive computerized cognitive training may not enhance cognition in healthy older adults. Our lack of findings could be due to a variety of reasons, including studying a cohort of healthy older adults that were performing near their cognitive ceiling, employing a training protocol that was not sufficient to produce a change, or that no true findings exist. Research suggests numerous study factors that can moderate the results. In addition, the role of psychological variables, such as expectations and motivation to train, are critical in understanding the effects of cognitive training.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 150 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 150 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 28 19%
Student > Bachelor 21 14%
Student > Master 17 11%
Student > Doctoral Student 9 6%
Researcher 8 5%
Other 22 15%
Unknown 45 30%
Readers by discipline Count As %
Psychology 49 33%
Neuroscience 15 10%
Nursing and Health Professions 6 4%
Medicine and Dentistry 5 3%
Social Sciences 5 3%
Other 17 11%
Unknown 53 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2022.
All research outputs
#2,671,320
of 23,515,383 outputs
Outputs from Frontiers in Aging Neuroscience
#941
of 4,953 outputs
Outputs of similar age
#50,731
of 312,018 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#26
of 101 outputs
Altmetric has tracked 23,515,383 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,953 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.4. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,018 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 101 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.