↓ Skip to main content

Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars

Overview of attention for article published in Frontiers in Plant Science, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars
Published in
Frontiers in Plant Science, January 2013
DOI 10.3389/fpls.2013.00379
Pubmed ID
Authors

P. J. Kerbiriou, T. J. Stomph, E. T. Lammerts van Bueren, P. C. Struik

Abstract

Background and aims: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grown lettuce; exploring genetic variation in such traits might contribute to strategies to select for robust cultivars, i.e., cultivars that perform well in the field, even under stress. Methods: To investigate the impact of below-ground (root development and resource capture) on above-ground (shoot weight, leaf area) traits, different combinations of shoot and root growth were created using transplants of different sizes in three field experiments. Genetic variation in morphological and physiological below- and above-ground responses to different types of transplant shocks was assessed using four cultivars. Results: Transplanting over-developed seedlings did not affect final yield of any of the four cultivars. Small transplant size persistently impacted growth and delayed maturity. The cultivars with overall larger root weights and rooting depth, "Matilda" and "Pronto," displayed a slightly higher growth rate in the linear phase leading to better yields than "Mariska" which had a smaller root system and a slower linear growth despite a higher maximal exponential growth rate. "Nadine," which had the highest physiological nitrogen-use efficiency (g dry matter produced per g N accumulated in the head) among the four cultivars used in these trials, gave most stable yields over seasons and trial locations. Conclusions: Robustness was conferred by a large root system exploring deep soil layers. Additional root proliferation generally correlates with improved nitrate capture in a soil layer and cultivars with a larger root system may therefore perform better in harsh environmental conditions; increased nitrogen use efficiency can also confer robustness at low cost for the plant, and secure stable yields under a wide range of growing conditions.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 24 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 28%
Student > Bachelor 4 16%
Student > Master 3 12%
Student > Doctoral Student 1 4%
Unspecified 1 4%
Other 2 8%
Unknown 7 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 56%
Unspecified 1 4%
Economics, Econometrics and Finance 1 4%
Social Sciences 1 4%
Unknown 8 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 September 2013.
All research outputs
#20,203,867
of 22,723,682 outputs
Outputs from Frontiers in Plant Science
#15,873
of 19,973 outputs
Outputs of similar age
#248,790
of 280,763 outputs
Outputs of similar age from Frontiers in Plant Science
#241
of 517 outputs
Altmetric has tracked 22,723,682 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,973 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,763 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 517 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.