↓ Skip to main content

Biochar Addition Increases the Rates of Dissimilatory Iron Reduction and Methanogenesis in Ferrihydrite Enrichments

Overview of attention for article published in Frontiers in Microbiology, April 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
6 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biochar Addition Increases the Rates of Dissimilatory Iron Reduction and Methanogenesis in Ferrihydrite Enrichments
Published in
Frontiers in Microbiology, April 2017
DOI 10.3389/fmicb.2017.00589
Pubmed ID
Authors

Guo-Wei Zhou, Xiao-Ru Yang, Christopher W. Marshall, Hu Li, Bang-Xiao Zheng, Yu Yan, Jian-Qiang Su, Yong-Guan Zhu

Abstract

Biochar contains quinones and aromatic structures that facilitate extracellular electron transfer between microbial cells and insoluble minerals. In this study, granulated biochar (1.2-2 mm) and powdered biochar (<0.15 mm) were amended to two ferrihydrite (in situ ferrihydrite and ex situ ferrihydrite) enrichments to investigate the effect of biochar with different particle sizes on dissimilatory iron(III)-reducing bacteria (DIRB) and methanogens. Biochar addition significantly stimulated the reduction of both in situ ferrihydrite and ex situ ferrihydrite and the production of methane. Powdered biochar amendments increased iron reduction compared to granulated biochar amendment in both the in situ ferrihydrite and ex situ ferrihydrite enrichments. However, no significant difference was observed in methane production between the powdered biochar and granulated biochar amendments in the two ferrihydrite enrichments. Analysis of 16S rRNA gene sequences showed that both DIRB and methanogens were enriched after biochar amendments in the in situ ferrihydrite and ex situ ferrihydrite enrichments. Taxa belonging to the Geobacteraceae and methanogenic genus affiliated to Methanosarcina were detected with significantly higher relative abundances in powdered biochar amendments than those in granulated biochar amendments in both the ferrihydrite enrichments. X-ray diffraction analysis indicated green rust [Fe2(CO3) (OH)] and vivianite [Fe3(PO4)2 8(H2O)] formed in the ex situ ferrihydrite and in situ ferrihydrite enrichments without biochar addition, respectively. After granulated biochar amendment, the mineral phase changed from the green rust to vivianite in the ex situ ferrihydrite enrichment, while crystalline vivianite and iron oxide (γ-Fe2O3) were detected simultaneously in the in situ ferrihydrite enrichment. No crystalline iron compound was found in the powdered biochar amendments in both ferrihydrite enrichments. Overall, our study illustrated that the addition of biochar affected iron-reducing and methane-generating microbial communities to some extent.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 25%
Student > Master 13 20%
Researcher 4 6%
Student > Doctoral Student 4 6%
Student > Bachelor 4 6%
Other 12 19%
Unknown 11 17%
Readers by discipline Count As %
Environmental Science 22 34%
Agricultural and Biological Sciences 12 19%
Chemistry 3 5%
Engineering 3 5%
Earth and Planetary Sciences 3 5%
Other 4 6%
Unknown 17 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 February 2019.
All research outputs
#6,140,061
of 24,972,914 outputs
Outputs from Frontiers in Microbiology
#5,552
of 28,569 outputs
Outputs of similar age
#90,361
of 315,021 outputs
Outputs of similar age from Frontiers in Microbiology
#185
of 497 outputs
Altmetric has tracked 24,972,914 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 28,569 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,021 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 497 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.