↓ Skip to main content

Vitamin C Pretreatment Enhances the Antibacterial Effect of Cold Atmospheric Plasma

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
86 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Vitamin C Pretreatment Enhances the Antibacterial Effect of Cold Atmospheric Plasma
Published in
Frontiers in Cellular and Infection Microbiology, February 2017
DOI 10.3389/fcimb.2017.00043
Pubmed ID
Authors

Saga Helgadóttir, Santosh Pandit, Venkata R. S. S. Mokkapati, Fredrik Westerlund, Peter Apell, Ivan Mijakovic

Abstract

Bacterial biofilms are three-dimensional structures containing bacterial cells enveloped in a protective polymeric matrix, which renders them highly resistant to antibiotics and the human immune system. Therefore, the capacity to make biofilms is considered as a major virulence factor for pathogenic bacteria. Cold Atmospheric Plasma (CAP) is known to be quite efficient in eradicating planktonic bacteria, but its effectiveness against biofilms has not been thoroughly investigated. The goal of this study was to evaluate the effect of exposure of CAP against mature biofilm for different time intervals and to evaluate the effect of combined treatment with vitamin C. We demonstrate that CAP is not very effective against 48 h mature bacterial biofilms of several common opportunistic pathogens: Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. However, if bacterial biofilms are pre-treated with vitamin C for 15 min before exposure to CAP, a significantly stronger bactericidal effect can be obtained. Vitamin C pretreatment enhances the bactericidal effect of cold plasma by reducing the viability from 10 to 2% in E. coli biofilm, 50 to 11% in P. aeruginosa, and 61 to 18% in S. epidermidis biofilm. Since it is not feasible to use extended CAP treatments in medical practice, we argue that the pre-treatment of infectious lesions with vitamin C prior to CAP exposure can be a viable route for efficient eradication of bacterial biofilms in many different applications.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 86 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 19%
Student > Master 13 15%
Researcher 10 12%
Student > Doctoral Student 7 8%
Student > Bachelor 4 5%
Other 17 20%
Unknown 19 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 15%
Medicine and Dentistry 10 12%
Agricultural and Biological Sciences 9 10%
Immunology and Microbiology 7 8%
Engineering 5 6%
Other 18 21%
Unknown 24 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 August 2020.
All research outputs
#13,638,109
of 24,178,331 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#1,969
of 7,309 outputs
Outputs of similar age
#153,214
of 314,934 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#35
of 118 outputs
Altmetric has tracked 24,178,331 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,309 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,934 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.