↓ Skip to main content

Hif-1α Overexpression Improves Transplanted Bone Mesenchymal Stem Cells Survival in Rat MCAO Stroke Model

Overview of attention for article published in Frontiers in Molecular Neuroscience, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hif-1α Overexpression Improves Transplanted Bone Mesenchymal Stem Cells Survival in Rat MCAO Stroke Model
Published in
Frontiers in Molecular Neuroscience, March 2017
DOI 10.3389/fnmol.2017.00080
Pubmed ID
Authors

Bingke Lv, Feng Li, Jianbang Han, Jie Fang, Limin Xu, Chengmei Sun, Tian Hua, Zhongfei Zhang, Zhiming Feng, Xiaodan Jiang

Abstract

Bone mesenchymal stem cells (BMSCs) death after transplantation is a serious obstacle impacting on the outcome of cell therapy for cerebral infarction. This study was aimed to investigate whether modification of BMSCs with hypoxia-inducible factor 1α (Hif-1α) could enhance the survival of the implanted BMSCs. BMSCs were isolated from Wistar rats, and were infected with Hif-1α-GFP lentiviral vector or Hif-1α siRNA. The modified BMSCs were exposed to oxygen-glucose deprivation (OGD) condition, cellular viability and apoptosis were then assessed. An inhibitor of AMPK (compound C) was used to detect whether AMPK and mTOR were implicated in the functions of Hif-1α on BMSCs survival. Besides, ultrastructure of BMSCs was observed and the expression of autophagy markers was measured. The modified BMSCs were transplanted into middle cerebral artery occlusion (MCAO) model of rats, and the cerebral infarction volume and neurological function was assessed. The results indicated that Hif-1α overexpression protected OGD induced injury by promoting cellular viability and inhibiting apoptosis. AMPK was activated while mTOR was inactivated by Hif-1α overexpression, and that might be through which Hif-1α functioned BMSCs survival. Hif-1α overexpression promoted autophagy; more important, compound C abolished the induction of Hif-1α on autophagy. Transplantation of the overexpressed Hif-1α of BMSCs into the MCAO rats reduced brain infarct volume and improved neurobehavioral outcome; besides, it inhibited pro-inflammatory cytokines generation while promoted neurotrophin secretion. In conclusion, Hif-1α might be contributed in the survival of BMSCs by regulating the activation of AMPK and mTOR, as well as by promoting autophagy.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 21%
Student > Bachelor 4 14%
Student > Master 3 11%
Other 2 7%
Unspecified 1 4%
Other 2 7%
Unknown 10 36%
Readers by discipline Count As %
Medicine and Dentistry 6 21%
Neuroscience 3 11%
Biochemistry, Genetics and Molecular Biology 2 7%
Unspecified 1 4%
Business, Management and Accounting 1 4%
Other 4 14%
Unknown 11 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 April 2017.
All research outputs
#14,608,511
of 23,839,820 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,517
of 3,070 outputs
Outputs of similar age
#169,751
of 310,491 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#58
of 104 outputs
Altmetric has tracked 23,839,820 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,070 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.9. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,491 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 104 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.