↓ Skip to main content

Tangles, Toxicity, and Tau Secretion in AD – New Approaches to a Vexing Problem

Overview of attention for article published in Frontiers in Neurology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
152 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tangles, Toxicity, and Tau Secretion in AD – New Approaches to a Vexing Problem
Published in
Frontiers in Neurology, January 2013
DOI 10.3389/fneur.2013.00160
Pubmed ID
Authors

Kerry L. Gendreau, Garth F. Hall

Abstract

When the microtubule (MT)-associated protein tau is not bound to axonal MTs, it becomes hyperphosphorylated and vulnerable to proteolytic cleavage and other changes typically seen in the hallmark tau deposits (neurofibrillary tangles) of tau-associated neurodegenerative diseases (tauopathies). Neurofibrillary tangle formation is preceded by tau oligomerization and accompanied by covalent crosslinking and cytotoxicity, making tangle cytopathogenesis a natural central focus of studies directed at understanding the role of tau in neurodegenerative disease. Recent studies suggest that the formation of tau oligomers may be more closely related to tau neurotoxicity than the presence of the tangles themselves. It has also become increasingly clear that tau pathobiology involves a wide variety of other cellular abnormalities including a disruption of autophagy, vesicle trafficking mechanisms, axoplasmic transport, neuronal polarity, and even the secretion of tau, which is normally a cytosolic protein, to the extracellular space. In this review, we discuss tau misprocessing, toxicity and secretion in the context of normal tau functions in developing and mature neurons. We also compare tau cytopathology to that of other aggregation-prone proteins involved in neurodegeneration (alpha synuclein, prion protein, and APP). Finally, we consider potential mechanisms of intra- and interneuronal tau lesion spreading, an area of particular recent interest.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 152 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 1%
India 1 <1%
Netherlands 1 <1%
Spain 1 <1%
United Kingdom 1 <1%
Unknown 146 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 38 25%
Researcher 27 18%
Student > Bachelor 22 14%
Student > Master 18 12%
Other 6 4%
Other 23 15%
Unknown 18 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 53 35%
Neuroscience 21 14%
Medicine and Dentistry 18 12%
Biochemistry, Genetics and Molecular Biology 15 10%
Chemistry 10 7%
Other 12 8%
Unknown 23 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2013.
All research outputs
#18,351,676
of 22,727,570 outputs
Outputs from Frontiers in Neurology
#7,664
of 11,634 outputs
Outputs of similar age
#218,074
of 280,760 outputs
Outputs of similar age from Frontiers in Neurology
#104
of 210 outputs
Altmetric has tracked 22,727,570 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,634 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,760 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.