↓ Skip to main content

Aberrant DNA methylation and expression of SPDEF and FOXA2 in airway epithelium of patients with COPD

Overview of attention for article published in Clinical Epigenetics, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aberrant DNA methylation and expression of SPDEF and FOXA2 in airway epithelium of patients with COPD
Published in
Clinical Epigenetics, April 2017
DOI 10.1186/s13148-017-0341-7
Pubmed ID
Authors

J. Song, I. H. Heijink, L. E. M. Kistemaker, M. Reinders-Luinge, W. Kooistra, J. A. Noordhoek, R. Gosens, C. A. Brandsma, W. Timens, P. S. Hiemstra, M. G. Rots, M. N. Hylkema

Abstract

Goblet cell metaplasia, a common feature of chronic obstructive pulmonary disease (COPD), is associated with mucus hypersecretion which contributes to the morbidity and mortality among patients. Transcription factors SAM-pointed domain-containing Ets-like factor (SPDEF) and forkhead box protein A2 (FOXA2) regulate goblet cell differentiation. This study aimed to (1) investigate DNA methylation and expression of SPDEF and FOXA2 during goblet cell differentiation and (2) compare this in airway epithelial cells from patients with COPD and controls during mucociliary differentiation. To assess DNA methylation and expression of SPDEF and FOXA2 during goblet cell differentiation, primary airway epithelial cells, isolated from trachea (non-COPD controls) and bronchial tissue (patients with COPD), were differentiated by culture at the air-liquid interface (ALI) in the presence of cytokine interleukin (IL)-13 to promote goblet cell differentiation. We found that SPDEF expression was induced during goblet cell differentiation, while FOXA2 expression was decreased. Importantly, CpG number 8 in the SPDEF promoter was hypermethylated upon differentiation, whereas DNA methylation of FOXA2 promoter was not changed. In the absence of IL-13, COPD-derived ALI-cultured cells displayed higher SPDEF expression than control-derived ALI cultures, whereas no difference was found for FOXA2 expression. This was accompanied with hypomethylation of CpG number 6 in the SPDEF promoter and also hypomethylation of CpG numbers 10 and 11 in the FOXA2 promoter. These findings suggest that aberrant DNA methylation of SPDEF and FOXA2 is one of the factors underlying mucus hypersecretion in COPD, opening new avenues for epigenetic-based inhibition of mucus hypersecretion.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 22%
Researcher 11 17%
Student > Bachelor 8 12%
Student > Master 5 8%
Student > Doctoral Student 2 3%
Other 7 11%
Unknown 18 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 26%
Medicine and Dentistry 13 20%
Immunology and Microbiology 4 6%
Nursing and Health Professions 2 3%
Agricultural and Biological Sciences 2 3%
Other 6 9%
Unknown 21 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 January 2018.
All research outputs
#14,931,166
of 22,965,074 outputs
Outputs from Clinical Epigenetics
#791
of 1,261 outputs
Outputs of similar age
#183,549
of 309,698 outputs
Outputs of similar age from Clinical Epigenetics
#18
of 34 outputs
Altmetric has tracked 22,965,074 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,261 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,698 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.