↓ Skip to main content

Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)

Overview of attention for article published in BMC Genomics, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
68 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)
Published in
BMC Genomics, May 2017
DOI 10.1186/s12864-017-3748-9
Pubmed ID
Authors

Bin Zhu, Manyu Xu, Haiyan Shi, Xiwu Gao, Pei Liang

Abstract

Long noncoding RNAs (lncRNAs) are now considered important regulatory factors, with a variety of biological functions in many species including insects. Some lncRNAs have the ability to show rapid responses to diverse stimuli or stress factors and are involved in responses to insecticide. However, there are no reports to date on the characterization of lncRNAs associated with chlorantraniliprole resistance in Plutella xylostella. Nine RNA libraries constructed from one susceptible (CHS) and two chlorantraniliprole-resistant P. xylostella strains (CHR, ZZ) were sequenced, and 1309 lncRNAs were identified, including 877 intergenic lncRNAs, 190 intronic lncRNAs, 76 anti-sense lncRNAs and 166 sense-overlapping lncRNAs. Of the identified lncRNAs, 1059 were novel. Furthermore, we found that 64 lncRNAs were differentially expressed between CHR and CHS and 83 were differentially expressed between ZZ and CHS, of which 22 were differentially expressed in both CHR and ZZ. Most of the differentially expressed lncRNAs were hypothesized to be associated with chlorantraniliprole resistance in P. xylostella. The targets of lncRNAs via cis- (<10 kb upstream and downstream) or trans- (Pearson's correlation, r > 0.9 or < -0.9, P < 0.05) regulatory effects were also identified; many of the differently expressed lncRNAs were correlated with various important protein-coding genes involved in insecticide resistance, such as the ryanodine receptor, uridine diphosphate glucuronosyltransferase (UGTs), cytochrome P450, esterase and the ATP-binding cassette transporter. Our results represent the first global identification of lncRNAs associated with chlorantraniliprole resistance in P. xylostella. These results will facilitate future studies of the regulatory mechanisms of lncRNAs in chlorantraniliprole and other insecticide resistance and in other biological processes in P. xylostella.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 21%
Student > Ph. D. Student 5 13%
Student > Doctoral Student 5 13%
Student > Master 4 11%
Student > Postgraduate 2 5%
Other 6 16%
Unknown 8 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 39%
Biochemistry, Genetics and Molecular Biology 9 24%
Environmental Science 1 3%
Chemistry 1 3%
Unknown 12 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 December 2017.
All research outputs
#3,768,085
of 22,971,207 outputs
Outputs from BMC Genomics
#1,507
of 10,686 outputs
Outputs of similar age
#67,260
of 309,986 outputs
Outputs of similar age from BMC Genomics
#42
of 216 outputs
Altmetric has tracked 22,971,207 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,686 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,986 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 216 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.