↓ Skip to main content

Emergent structured transition from variation to repetition in a biologically-plausible model of learning in basal ganglia

Overview of attention for article published in Frontiers in Psychology, January 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user
googleplus
1 Google+ user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Emergent structured transition from variation to repetition in a biologically-plausible model of learning in basal ganglia
Published in
Frontiers in Psychology, January 2014
DOI 10.3389/fpsyg.2014.00091
Pubmed ID
Authors

Ashvin Shah, Kevin N. Gurney

Abstract

Often, when animals encounter an unexpected sensory event, they transition from executing a variety of movements to repeating the movement(s) that may have caused the event. According to a recent theory of action discovery (Redgrave and Gurney, 2006), repetition allows the animal to represent those movements, and the outcome, as an action for later recruitment. The transition from variation to repetition often follows a non-random, structured, pattern. While the structure of the pattern can be explained by sophisticated cognitive mechanisms, simpler mechanisms based on dopaminergic modulation of basal ganglia (BG) activity are thought to underlie action discovery (Redgrave and Gurney, 2006). In this paper we ask the question: can simple BG-mediated mechanisms account for a structured transition from variation to repetition, or are more sophisticated cognitive mechanisms always necessary? To address this question, we present a computational model of BG-mediated biasing of behavior. In our model, unlike most other models of BG function, the BG biases behavior through modulation of cortical response to excitation; many possible movements are represented by the cortical area; and excitation to the cortical area is topographically-organized. We subject the model to simple reaching tasks, inspired by behavioral studies, in which a location to which to reach must be selected. Locations within a target area elicit a reinforcement signal. A structured transition from variation to repetition emerges from simple BG-mediated biasing of cortical response to excitation. We show how the structured pattern influences behavior in simple and complicated tasks. We also present analyses that describe the structured transition from variation to repetition due to BG-mediated biasing and from biasing that would be expected from a type of cognitive biasing, allowing us to compare behavior resulting from these types of biasing and make connections with future behavioral experiments.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
France 1 3%
Australia 1 3%
Canada 1 3%
Romania 1 3%
United States 1 3%
Unknown 25 81%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 26%
Researcher 6 19%
Student > Master 4 13%
Student > Bachelor 2 6%
Professor 2 6%
Other 6 19%
Unknown 3 10%
Readers by discipline Count As %
Psychology 9 29%
Computer Science 5 16%
Medicine and Dentistry 4 13%
Neuroscience 3 10%
Physics and Astronomy 2 6%
Other 3 10%
Unknown 5 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 June 2014.
All research outputs
#14,773,697
of 22,743,667 outputs
Outputs from Frontiers in Psychology
#16,030
of 29,608 outputs
Outputs of similar age
#183,049
of 305,223 outputs
Outputs of similar age from Frontiers in Psychology
#131
of 182 outputs
Altmetric has tracked 22,743,667 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 29,608 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 305,223 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 182 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.