↓ Skip to main content

Hierarchical clustering analysis of reading aloud data: a new technique for evaluating the performance of computational models

Overview of attention for article published in Frontiers in Psychology, March 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hierarchical clustering analysis of reading aloud data: a new technique for evaluating the performance of computational models
Published in
Frontiers in Psychology, March 2014
DOI 10.3389/fpsyg.2014.00267
Pubmed ID
Authors

Serje Robidoux, Stephen C. Pritchard

Abstract

DRC (Coltheart et al., 2001) and CDP++ (Perry et al., 2010) are two of the most successful models of reading aloud. These models differ primarily in how their sublexical systems convert letter strings into phonological codes. DRC adopts a set of grapheme-to-phoneme conversion rules (GPCs) while CDP++ uses a simple trained network that has been exposed to a combination of rules and the spellings and pronunciations of known words. Thus far the debate between fixed rules and learned associations has largely emphasized reaction time experiments, error rates in dyslexias, and item-level variance from large-scale databases. Recently, Pritchard et al. (2012) examined the models' non-word reading in a new way. They compared responses produced by the models to those produced by 45 skilled readers. Their item-by-item analysis is informative, but leaves open some questions that can be addressed with a different technique. Using hierarchical clustering techniques, we first examined the subject data to identify if there are classes of subjects that are similar to each other in their overall response profiles. We found that there are indeed two groups of subject that differ in their pronunciations for certain consonant clusters. We also tested the possibility that CDP++ is modeling one set of subjects well, while DRC is modeling a different set of subjects. We found that CDP++ does not fit any human reader's response pattern very well, while DRC fits the human readers as well as or better than any other reader.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 20%
Student > Doctoral Student 4 20%
Professor 2 10%
Researcher 2 10%
Student > Bachelor 1 5%
Other 5 25%
Unknown 2 10%
Readers by discipline Count As %
Psychology 8 40%
Arts and Humanities 2 10%
Business, Management and Accounting 1 5%
Linguistics 1 5%
Computer Science 1 5%
Other 3 15%
Unknown 4 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2014.
All research outputs
#20,226,756
of 22,751,628 outputs
Outputs from Frontiers in Psychology
#23,942
of 29,632 outputs
Outputs of similar age
#193,347
of 226,157 outputs
Outputs of similar age from Frontiers in Psychology
#208
of 239 outputs
Altmetric has tracked 22,751,628 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 29,632 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 226,157 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 239 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.