↓ Skip to main content

Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor

Overview of attention for article published in Frontiers in Cellular Neuroscience, April 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor
Published in
Frontiers in Cellular Neuroscience, April 2014
DOI 10.3389/fncel.2014.00106
Pubmed ID
Authors

Cheryl A. Frye, Carolyn J. Koonce, Alicia A. Walf

Abstract

Neurosteroids are cholesterol-based hormones that can be produced in the brain, independent of secretion from peripheral endocrine glands, such as the gonads and adrenals. A focus in our laboratory for over 25 years has been how production of the pregnane neurosteroid, allopregnanolone, is regulated and the novel (i.e., non steroid receptor) targets for steroid action for behavior. One endpoint of interest has been lordosis, the mating posture of female rodents. Allopregnanolone is necessary and sufficient for lordosis, and the brain circuitry underlying it, such as actions in the midbrain ventral tegmental area (VTA), has been well-characterized. Published and recent findings supporting a dynamic role of allopregnanolone are included in this review. First, contributions of ovarian and adrenal sources of precursors of allopregnanolone, and the requisite enzymatic actions for de novo production in the central nervous system will be discussed. Second, how allopregnanolone produced in the brain has actions on behavioral processes that are independent of binding to steroid receptors, but instead involve rapid modulatory actions via neurotransmitter targets (e.g., γ-amino butyric acid-GABA, N-methyl-D-aspartate- NMDA) will be reviewed. Third, a recent focus on characterizing the role of a promiscuous nuclear receptor, pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism and expressed in the VTA, as a target for allopregnanolone and how this relates to both actions and production of allopregnanolone will be addressed. For example, allopregnanolone can bind PXR and knocking down expression of PXR in the midbrain VTA attenuates actions of allopregnanolone via NMDA and/or GABAA for lordosis. Our understanding of allopregnanolone's actions in the VTA for lordosis has been extended to reveal the role of allopregnanolone for broader, clinically-relevant questions, such as neurodevelopmental processes, neuropsychiatric disorders, epilepsy, and aging.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Peru 1 2%
Unknown 50 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 17%
Student > Bachelor 6 12%
Student > Doctoral Student 6 12%
Student > Ph. D. Student 6 12%
Student > Master 5 10%
Other 5 10%
Unknown 15 29%
Readers by discipline Count As %
Neuroscience 10 19%
Medicine and Dentistry 9 17%
Pharmacology, Toxicology and Pharmaceutical Science 5 10%
Agricultural and Biological Sciences 5 10%
Biochemistry, Genetics and Molecular Biology 4 8%
Other 4 8%
Unknown 15 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 February 2015.
All research outputs
#4,096,567
of 22,754,104 outputs
Outputs from Frontiers in Cellular Neuroscience
#825
of 4,222 outputs
Outputs of similar age
#41,482
of 228,039 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#9
of 40 outputs
Altmetric has tracked 22,754,104 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,222 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 228,039 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.