↓ Skip to main content

CaMKII regulation of cardiac ryanodine receptors and inositol triphosphate receptors

Overview of attention for article published in Frontiers in Pharmacology, May 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CaMKII regulation of cardiac ryanodine receptors and inositol triphosphate receptors
Published in
Frontiers in Pharmacology, May 2014
DOI 10.3389/fphar.2014.00101
Pubmed ID
Authors

Emmanuel Camors, Héctor H. Valdivia

Abstract

Ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs) are structurally related intracellular calcium release channels that participate in multiple primary or secondary amplified Ca(2+) signals, triggering muscle contraction and oscillatory Ca(2+) waves, or activating transcription factors. In the heart, RyRs play an indisputable role in the process of excitation-contraction coupling as the main pathway for Ca(2+) release from sarcoplasmic reticulum (SR), and a less prominent role in the process of excitation-transcription coupling. Conversely, InsP3Rs are believed to contribute in subtle ways, only, to contraction of the heart, and in more important ways to regulation of transcription factors. Because uncontrolled activity of either RyRs or InsP3Rs may elicit life-threatening arrhythmogenic and/or remodeling Ca(2+) signals, regulation of their activity is of paramount importance for normal cardiac function. Due to their structural similarity, many regulatory factors, accessory proteins, and post-translational processes are equivalent for RyRs and InsP3Rs. Here we discuss regulation of RyRs and InsP3Rs by CaMKII phosphorylation, but touch on other kinases whenever appropriate. CaMKII is emerging as a powerful modulator of RyR and InsP3R activity but interestingly, some of the complexities and controversies surrounding phosphorylation of RyRs also apply to InsP3Rs, and a clear-cut effect of CaMKII on either channel eludes investigators for now. Nevertheless, some effects of CaMKII on global cellular activity, such as SR Ca(2+) leak or force-frequency potentiation, appear clear now, and this constrains the limits of the controversies and permits a more tractable approach to elucidate the effects of phosphorylation at the single channel level.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 1%
Switzerland 1 1%
Unknown 68 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 23%
Researcher 10 14%
Student > Doctoral Student 10 14%
Professor 6 9%
Student > Master 6 9%
Other 12 17%
Unknown 10 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 27%
Agricultural and Biological Sciences 14 20%
Medicine and Dentistry 12 17%
Engineering 4 6%
Neuroscience 3 4%
Other 6 9%
Unknown 12 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 May 2014.
All research outputs
#20,229,658
of 22,755,127 outputs
Outputs from Frontiers in Pharmacology
#9,977
of 16,008 outputs
Outputs of similar age
#193,420
of 227,621 outputs
Outputs of similar age from Frontiers in Pharmacology
#59
of 83 outputs
Altmetric has tracked 22,755,127 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,008 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 227,621 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 83 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.