↓ Skip to main content

Penalized regression approaches to testing for quantitative trait-rare variant association

Overview of attention for article published in Frontiers in Genetics, May 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Penalized regression approaches to testing for quantitative trait-rare variant association
Published in
Frontiers in Genetics, May 2014
DOI 10.3389/fgene.2014.00121
Pubmed ID
Authors

Sunkyung Kim, Wei Pan, Xiaotong Shen

Abstract

In statistical data analysis, penalized regression is considered an attractive approach for its ability of simultaneous variable selection and parameter estimation. Although penalized regression methods have shown many advantages in variable selection and outcome prediction over other approaches for high-dimensional data, there is a relative paucity of the literature on their applications to hypothesis testing, e.g., in genetic association analysis. In this study, we apply several new penalized regression methods with a novel penalty, called Truncated L1 -penalty (TLP) (Shen et al., 2012), for either variable selection, or both variable selection and parameter grouping, in a data-adaptive way to test for association between a quantitative trait and a group of rare variants. The performance of the new methods are compared with some existing tests, including some recently proposed global tests and penalized regression-based methods, via simulations and an application to the real sequence data of the Genetic Analysis Workshop 17 (GAW17). Although our proposed penalized methods can improve over some existing penalized methods, often they do not outperform some existing global association tests. Some possible problems with utilizing penalized regression methods in genetic hypothesis testing are discussed. Given the capability of penalized regression in selecting causal variants and its sometimes promising performance, further studies are warranted.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 30%
Student > Ph. D. Student 2 20%
Other 2 20%
Professor > Associate Professor 1 10%
Unknown 2 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 30%
Computer Science 2 20%
Mathematics 1 10%
Biochemistry, Genetics and Molecular Biology 1 10%
Unknown 3 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 May 2014.
All research outputs
#20,229,658
of 22,755,127 outputs
Outputs from Frontiers in Genetics
#8,556
of 11,758 outputs
Outputs of similar age
#192,742
of 226,936 outputs
Outputs of similar age from Frontiers in Genetics
#102
of 113 outputs
Altmetric has tracked 22,755,127 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,758 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 226,936 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.