↓ Skip to main content

Putative Role of Adipose Tissue in Growth and Metabolism of Colon Cancer Cells

Overview of attention for article published in Frontiers in oncology, June 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
56 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Putative Role of Adipose Tissue in Growth and Metabolism of Colon Cancer Cells
Published in
Frontiers in oncology, June 2014
DOI 10.3389/fonc.2014.00164
Pubmed ID
Authors

Betty Schwartz, Einav Yehuda-Shnaidman

Abstract

Newly emerging data highlight obesity as an important risk factor for developing certain types of cancer, including colorectal cancer. Although evidence supports a link between the two, the mechanisms responsible for this relationship have not yet been fully elucidated. Hypertrophied and dysfunctional adipose tissue of the obese state is characterized by low-grade inflammation. Adipokines and cytokines secreted from adipocytes, together with the abundant availability of lipids from adipocytes in the tumor microenvironment, promote adhesion, migration, and invasion of tumor cells and support tumor progression and uncontrolled growth. One of the predisposed targets of the deleterious effects exerted by secretions from adipose tissue in obesity is the activities associated with the cellular mitochondria. Mitochondrial oxidative metabolism plays a key role in meeting cells' energetic demands by oxidative phosphorylation (OxPhos). Here we discuss: (a) the dynamic relationship between glycolysis, the tricarboxylic acid cycle, and OxPhos; (b) the evidence for impaired OxPhos (i.e., mitochondrial dysfunction) in colon cancer; (c) the mechanisms by which mitochondrial dysfunction can predispose to cancer. We propose that impaired OxPhos increases susceptibility to colon cancer since OxPhos is sensitive to a large number of factors that are intrinsic to the host (e.g., inflammation). Given that adipocytes are a major source of adipokines and energy for the cancer cell, understanding the mechanisms of metabolic symbiosis between cancer cells and adipocytes should reveal new therapeutic possibilities.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 3%
United Kingdom 1 1%
Nigeria 1 1%
Unknown 72 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 26%
Researcher 12 16%
Student > Bachelor 8 11%
Student > Master 7 9%
Student > Doctoral Student 4 5%
Other 10 13%
Unknown 15 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 26%
Biochemistry, Genetics and Molecular Biology 14 18%
Medicine and Dentistry 13 17%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Unspecified 2 3%
Other 7 9%
Unknown 18 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 July 2014.
All research outputs
#19,944,994
of 25,374,647 outputs
Outputs from Frontiers in oncology
#9,319
of 22,416 outputs
Outputs of similar age
#168,698
of 242,711 outputs
Outputs of similar age from Frontiers in oncology
#47
of 98 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,416 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 242,711 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 98 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.