↓ Skip to main content

Orthonome – a new pipeline for predicting high quality orthologue gene sets applicable to complete and draft genomes

Overview of attention for article published in BMC Genomics, August 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Orthonome – a new pipeline for predicting high quality orthologue gene sets applicable to complete and draft genomes
Published in
BMC Genomics, August 2017
DOI 10.1186/s12864-017-4079-6
Pubmed ID
Authors

Rahul V. Rane, John G. Oakeshott, Thu Nguyen, Ary A. Hoffmann, Siu F. Lee

Abstract

Distinguishing orthologous and paralogous relationships between genes across multiple species is essential for comparative genomic analyses. Various computational approaches have been developed to resolve these evolutionary relationships, but strong trade-offs between precision and recall of orthologue prediction remains an ongoing challenge. Here we present Orthonome, an orthologue prediction pipeline, designed to reduce the trade-off between orthologue capture rates (recall) and accuracy of multi-species orthologue prediction. The pipeline compares sequence domains and then forms sequence-similar clusters before using phylogenetic comparisons to identify inparalogues. It then corrects sequence similarity metrics for fragment and gene length bias using a novel scoring metric capturing relationships between full length as well as fragmented genes. The remaining genes are then brought together for the identification of orthologues within a phylogenetic framework. The orthologue predictions are further calibrated along with inparalogues and gene births, using synteny, to identify novel orthologous relationships. We use 12 high quality Drosophila genomes to show that, compared to other orthologue prediction pipelines, Orthonome provides orthogroups with minimal error but high recall. Furthermore, Orthonome is resilient to suboptimal assembly/annotation quality, with the inclusion of draft genomes from eight additional Drosophila species still providing >6500 1:1 orthologues across all twenty species while retaining a better combination of accuracy and recall than other pipelines. Orthonome is implemented as a searchable database and query tool along with multiple-sequence alignment browsers for all sets of orthologues. The underlying documentation and database are accessible at http://www.orthonome.com . We demonstrate that Orthonome provides a superior combination of orthologue capture rates and accuracy on complete and draft drosophilid genomes when tested alongside previously published pipelines. The study also highlights a greater degree of evolutionary conservation across drosophilid species than earlier thought.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 29%
Student > Ph. D. Student 11 20%
Student > Master 7 13%
Student > Bachelor 5 9%
Other 3 5%
Other 4 7%
Unknown 10 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 39%
Biochemistry, Genetics and Molecular Biology 10 18%
Computer Science 5 9%
Medicine and Dentistry 2 4%
Business, Management and Accounting 1 2%
Other 2 4%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 September 2017.
All research outputs
#18,137,447
of 23,301,510 outputs
Outputs from BMC Genomics
#7,632
of 10,742 outputs
Outputs of similar age
#227,715
of 317,122 outputs
Outputs of similar age from BMC Genomics
#132
of 210 outputs
Altmetric has tracked 23,301,510 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,742 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,122 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.