↓ Skip to main content

Signal-independent timescale analysis (SITA) and its application for neural coding during reaching and walking

Overview of attention for article published in Frontiers in Computational Neuroscience, August 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Signal-independent timescale analysis (SITA) and its application for neural coding during reaching and walking
Published in
Frontiers in Computational Neuroscience, August 2014
DOI 10.3389/fncom.2014.00091
Pubmed ID
Authors

Miriam Zacksenhouse, Mikhail A. Lebedev, Miguel A. L. Nicolelis

Abstract

What are the relevant timescales of neural encoding in the brain? This question is commonly investigated with respect to well-defined stimuli or actions. However, neurons often encode multiple signals, including hidden or internal, which are not experimentally controlled, and thus excluded from such analysis. Here we consider all rate modulations as the signal, and define the rate-modulations signal-to-noise ratio (RM-SNR) as the ratio between the variance of the rate and the variance of the neuronal noise. As the bin-width increases, RM-SNR increases while the update rate decreases. This tradeoff is captured by the ratio of RM-SNR to bin-width, and its variations with the bin-width reveal the timescales of neural activity. Theoretical analysis and simulations elucidate how the interactions between the recovery properties of the unit and the spectral content of the encoded signals shape this ratio and determine the timescales of neural coding. The resulting signal-independent timescale analysis (SITA) is applied to investigate timescales of neural activity recorded from the motor cortex of monkeys during: (i) reaching experiments with Brain-Machine Interface (BMI), and (ii) locomotion experiments at different speeds. Interestingly, the timescales during BMI experiments did not change significantly with the control mode or training. During locomotion, the analysis identified units whose timescale varied consistently with the experimentally controlled speed of walking, though the specific timescale reflected also the recovery properties of the unit. Thus, the proposed method, SITA, characterizes the timescales of neural encoding and how they are affected by the motor task, while accounting for all rate modulations.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 31 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 28%
Researcher 7 22%
Student > Master 4 13%
Professor > Associate Professor 2 6%
Professor 2 6%
Other 3 9%
Unknown 5 16%
Readers by discipline Count As %
Engineering 10 31%
Neuroscience 5 16%
Agricultural and Biological Sciences 3 9%
Medicine and Dentistry 3 9%
Computer Science 1 3%
Other 5 16%
Unknown 5 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2014.
All research outputs
#18,375,064
of 22,758,963 outputs
Outputs from Frontiers in Computational Neuroscience
#1,052
of 1,338 outputs
Outputs of similar age
#167,912
of 235,508 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#16
of 25 outputs
Altmetric has tracked 22,758,963 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,338 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 235,508 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.