↓ Skip to main content

Interplay between sugar and hormone signaling pathways modulate floral signal transduction

Overview of attention for article published in Frontiers in Genetics, August 2014
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
157 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interplay between sugar and hormone signaling pathways modulate floral signal transduction
Published in
Frontiers in Genetics, August 2014
DOI 10.3389/fgene.2014.00218
Pubmed ID
Authors

Ianis G. Matsoukas

Abstract

NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 157 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 156 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 38 24%
Researcher 23 15%
Student > Master 15 10%
Student > Bachelor 14 9%
Student > Doctoral Student 10 6%
Other 21 13%
Unknown 36 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 77 49%
Biochemistry, Genetics and Molecular Biology 25 16%
Environmental Science 3 2%
Nursing and Health Professions 2 1%
Medicine and Dentistry 2 1%
Other 6 4%
Unknown 42 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 May 2015.
All research outputs
#12,931,497
of 23,314,015 outputs
Outputs from Frontiers in Genetics
#2,624
of 12,334 outputs
Outputs of similar age
#102,876
of 232,447 outputs
Outputs of similar age from Frontiers in Genetics
#62
of 139 outputs
Altmetric has tracked 23,314,015 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,334 research outputs from this source. They receive a mean Attention Score of 3.7. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 232,447 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 139 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.