↓ Skip to main content

Aspartic Proteases and Major Cell Wall Components in Candida albicans Trigger the Release of Neutrophil Extracellular Traps

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
62 Dimensions

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aspartic Proteases and Major Cell Wall Components in Candida albicans Trigger the Release of Neutrophil Extracellular Traps
Published in
Frontiers in Cellular and Infection Microbiology, September 2017
DOI 10.3389/fcimb.2017.00414
Pubmed ID
Authors

Marcin Zawrotniak, Oliwia Bochenska, Justyna Karkowska-Kuleta, Karolina Seweryn-Ozog, Wataru Aoki, Mitsuyoshi Ueda, Andrzej Kozik, Maria Rapala-Kozik

Abstract

Neutrophils use different mechanisms to cope with pathogens that invade the host organism. The most intriguing of these responses is a release of neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins with antimicrobial activity. An important potential target of NETs is Candida albicans-an opportunistic fungal pathogen that employs morphological and phenotype switches and biofilm formation during contact with neutrophils, accompanied by changes in epitope exposition that mask the pathogen from host recognition. These processes differ depending on infection conditions and are thus influenced by the surrounding environment. In the current study, we compared the NET release by neutrophils upon contact with purified main candidal cell surface components. We show here for the first time that in addition to the main cell wall-building polysaccharides (mannans and β-glucans), secreted aspartic proteases (Saps) trigger NETs with variable intensities. The most efficient NET-releasing response is with Sap4 and Sap6, which are known to be secreted by fungal hyphae. This involves mixed, ROS-dependent and ROS-independent signaling pathways, mainly through interactions with the CD11b receptor. In comparison, upon contact with the cell wall-bound Sap9 and Sap10, neutrophils responded via a ROS-dependent mechanism using CD16 and CD18 receptors for protease recognition. In addition to the Saps tested, the actuation of selected mediating kinases (Src, Syk, PI3K, and ERK) was also investigated. β-Glucans were found to trigger a ROS-dependent process of NET production with engagement of Dectin-1 as well as CD11b and CD18 receptors. Mannans were observed to be recognized by TLRs, CD14, and Dectin-1 receptors and triggered NET release mainly via a ROS-independent pathway. Our results thus strongly suggest that neutrophils activate NET production in response to different candidal components that are presented locally at low concentrations at the initial stages of infection. However, NET release seemed to be blocked by increasing numbers of fungal cells.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 90 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 19%
Researcher 11 12%
Student > Master 10 11%
Student > Doctoral Student 6 7%
Student > Bachelor 6 7%
Other 12 13%
Unknown 28 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 18%
Immunology and Microbiology 15 17%
Biochemistry, Genetics and Molecular Biology 11 12%
Medicine and Dentistry 9 10%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Other 7 8%
Unknown 30 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2017.
All research outputs
#13,495,353
of 23,002,898 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#2,212
of 6,498 outputs
Outputs of similar age
#159,569
of 318,503 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#43
of 102 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,498 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,503 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 102 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.