↓ Skip to main content

Impaired Cellular Energy Metabolism Contributes to Duck-Enteritis-Virus-Induced Autophagy via the AMPK–TSC2–MTOR Signaling Pathway

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, September 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impaired Cellular Energy Metabolism Contributes to Duck-Enteritis-Virus-Induced Autophagy via the AMPK–TSC2–MTOR Signaling Pathway
Published in
Frontiers in Cellular and Infection Microbiology, September 2017
DOI 10.3389/fcimb.2017.00423
Pubmed ID
Authors

Haichang Yin, Lili Zhao, Siqi Li, Lijing Xu, Yiping Wang, Hongyan Chen

Abstract

Duck enteritis virus (DEV) is a large, complex double-stranded DNA virus that induces duck embryo fibroblast (DEF) cells autophagy, which is beneficial to its own replication, but the mechanism has not been described. In this study, we showed that impaired cell energy metabolism is involved in DEV-induced autophagy, whereby ATP synthesis is disrupted in cells after DEV infection, which causes metabolic stress and activation of autophagy. Methyl pyruvate (MP) inhibited conversion of LC3I to LC3II and accumulation of GFP-LC3, which could reverse the energy loss caused by DEV infection. Inhibition of DEV replication by MP confirmed the above view. We found that infection with DEV activated the metabolic regulator 5' AMP-activated kinase (AMPK) and inhibited activity of mechanistic target of rapamycin (mTOR). In the cases where AMPK expression was inhibited, the LC3-I conversion to LC3-II ratio was decreased, as was GFP-LC3 point and DEV replication; in addition, inhibition of p-mTOR showed a reverse trend. We also found that tuberous sclerosis (TSC) 2 was a key mediator between AMPK and mTOR through activation by phosphorylation. siRNA targeting TSC2 was transfected to reverse the inhibition of mTOR, and down-regulate autophagy level and DEV replication, but AMPK expression was not changed, while siRNA targeting AMPK inhibited activation of TSC2. In conclusion, our findings indicate that energy metabolism in cell damage induced by DEV contributes to autophagy via the AMPK-TSC2-MTOR signaling pathway, which provides a new perspective for DEV and host interactions.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 27%
Student > Bachelor 1 9%
Other 1 9%
Student > Ph. D. Student 1 9%
Student > Postgraduate 1 9%
Other 0 0%
Unknown 4 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 36%
Medicine and Dentistry 2 18%
Agricultural and Biological Sciences 1 9%
Unknown 4 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2017.
All research outputs
#18,572,844
of 23,003,906 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#4,910
of 6,498 outputs
Outputs of similar age
#245,537
of 320,414 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#77
of 97 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,498 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 6th percentile – i.e., 6% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,414 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 97 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.