↓ Skip to main content

Reliable and Reproducible GABA Measurements Using Automated Spectral Prescription at Ultra-High Field

Overview of attention for article published in Frontiers in Human Neuroscience, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reliable and Reproducible GABA Measurements Using Automated Spectral Prescription at Ultra-High Field
Published in
Frontiers in Human Neuroscience, October 2017
DOI 10.3389/fnhum.2017.00506
Pubmed ID
Authors

Yan Li, Wei Bian, Peder Larson, Jason C. Crane, Prasanna Parvathaneni, Srikantan Nagarajan, Sarah J. Nelson

Abstract

Purpose: To evaluate spectral acquisition processes important for obtaining reliable and reproducible γ-aminobutyric acid (GABA) signals from volunteers in brain regions that are frequently used for neuroimaging studies [anterior cingulate cortex (ACC), superior temporal gyrus, and caudate] at ultra-high field. Methods: Ten healthy volunteers were studied using a single-voxel Point-RESolved Spectrosocpy (PRESS) sequence with band selective inversion with gradient dephasing pulses (BASING). The editing pulse was designed to be symmetrically placed at 2.0 and 1.4 ppm in the two cycles to reduce the co-editing of macro-molecules (MM). Spectral data were obtained with phase encoding matrix 8 × 8 × 1 and two editing cycles or 1 × 1 × 1 and 64 editing/64 non-editing. The total acquisition time was approximately 4.5 min for each acquisition. An automated MRS prescription method was utilized for the placement of the GABA scan location in 5/10 subjects. Three regions of interest were predefined in the MNI152 space and then registered and transformed to subject space. These volunteers also had repeat scans to examine between-session reproducibility. Results: The placement of editing pulses symmetrically at 1.7 ppm reduced the effect of MM contributions and provided more accurate GABA estimation. Chemical shift misregistration errors caused by classic PRESS localization sequence are more significant at ultra-high field strength. Therefore, a large over-excitation factor was needed to reduce this error. Furthermore, the inefficiency of saturation bands and unspoiled coherence could also interfere with the quality of the data. Reliable recovery of metabolite signals resulted from the implementation of 8 × 8 × 1 phase encoding that successfully removed artifacts and errors, without compromising the total acquisition time. Between successive scans on the same subject, dice overlap ratios of the excited spectral volume between the two scans were in the range of 92-95%. Within subject variability of metabolites between two repeat scans was smaller in the ACC and left superior temporal gyrus when compared to that in the right caudate, with averaged coefficients of variation being 3.6, 6.0, and 16.9%, respectively. Conclusion: This study demonstrated the feasibility of obtaining reliable and reproducible GABA measurements at ultra-high field.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 20%
Student > Ph. D. Student 5 17%
Student > Bachelor 3 10%
Student > Master 3 10%
Student > Postgraduate 2 7%
Other 3 10%
Unknown 8 27%
Readers by discipline Count As %
Neuroscience 5 17%
Medicine and Dentistry 4 13%
Agricultural and Biological Sciences 2 7%
Psychology 2 7%
Biochemistry, Genetics and Molecular Biology 2 7%
Other 5 17%
Unknown 10 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 November 2017.
All research outputs
#18,573,839
of 23,005,189 outputs
Outputs from Frontiers in Human Neuroscience
#6,094
of 7,188 outputs
Outputs of similar age
#251,099
of 327,861 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#129
of 147 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,188 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,861 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 147 others from the same source and published within six weeks on either side of this one. This one is in the 2nd percentile – i.e., 2% of its contemporaries scored the same or lower than it.