↓ Skip to main content

Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress

Overview of attention for article published in Frontiers in Plant Science, October 2014
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress
Published in
Frontiers in Plant Science, October 2014
DOI 10.3389/fpls.2014.00559
Pubmed ID
Authors

MyeongWon Oh, Yohei Nanjo, Setsuko Komatsu

Abstract

Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 16%
Student > Ph. D. Student 4 13%
Student > Master 3 10%
Student > Bachelor 2 6%
Student > Doctoral Student 2 6%
Other 6 19%
Unknown 9 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 29%
Biochemistry, Genetics and Molecular Biology 9 29%
Arts and Humanities 1 3%
Computer Science 1 3%
Psychology 1 3%
Other 0 0%
Unknown 10 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2014.
All research outputs
#17,730,142
of 22,768,097 outputs
Outputs from Frontiers in Plant Science
#11,935
of 20,063 outputs
Outputs of similar age
#174,528
of 259,226 outputs
Outputs of similar age from Frontiers in Plant Science
#119
of 196 outputs
Altmetric has tracked 22,768,097 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,063 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 259,226 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 196 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.