↓ Skip to main content

Nitrogen Addition Changes the Stoichiometry and Growth Rate of Different Organs in Pinus tabuliformis Seedlings

Overview of attention for article published in Frontiers in Plant Science, November 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nitrogen Addition Changes the Stoichiometry and Growth Rate of Different Organs in Pinus tabuliformis Seedlings
Published in
Frontiers in Plant Science, November 2017
DOI 10.3389/fpls.2017.01922
Pubmed ID
Authors

Hang Jing, Haoxiang Zhou, Guoliang Wang, Sha Xue, Guobin Liu, Mengcheng Duan

Abstract

Background: Nitrogen (N) deposition could influence plant stoichiometry and growth rate and thus alter the structure and function of the ecosystem. However, the mechanism by which N deposition changes the stoichiometry and relative growth rate (RGR) of plant organs, especially roots with different diameters, is unclear. Methods: We created a gradient of N availability (0-22.4 g N m(-2) year(-1)) for Pinus tabuliformis seedlings for 3 years and examined changes in the carbon (C):N:phosphorus (P) ratios and RGRs of the leaves, stems, and roots with four diameter classes (finest roots, <0.5 mm; finer roots, 0.5-1 mm; middle roots, 1-2 mm; and coarse roots, >2 mm). Results: (1) N addition significantly increased the C and N contents of the leaves and whole roots, the C content of the stems, the N:P ratios of the leaves and stems, and the C:P ratio of the whole roots. (2) In the root system, the C:N ratio of the finest roots and the C:P ratios of the finest and finer roots significantly changed with N addition. The N:P ratios of the finest, finer, and middle roots significantly increased with increasing amount of N added. The stoichiometric responses of the roots were more sensitive to N addition than those of the other organs (3) The RGR of all the organs significantly increased at low N addition levels (2.8-11.2 g N m(-2) year(-1)) but decreased at high N addition levels (22.4 g N m(-2) year(-1)). (4) The RGRs of the whole seedlings and leaves were not significantly correlated with their N:P ratios at low and high N addition levels. By contrast, the RGRs of the stems and roots showed a significantly positive correlation with their own N:P ratio only at low N addition level. Conclusion: Addition of N affected plant growth by altering the contents of C and N; the ratios of C, N, and P; and the RGRs of the organs. RGR is correlated with the N:P ratios of the stems and roots at low N addition level but not at high N addition level. This finding is inconsistent with the growth rate hypothesis.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 19%
Student > Doctoral Student 2 13%
Other 1 6%
Lecturer > Senior Lecturer 1 6%
Student > Ph. D. Student 1 6%
Other 3 19%
Unknown 5 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 38%
Environmental Science 4 25%
Unknown 6 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 December 2017.
All research outputs
#18,576,855
of 23,008,860 outputs
Outputs from Frontiers in Plant Science
#13,975
of 20,507 outputs
Outputs of similar age
#253,909
of 331,366 outputs
Outputs of similar age from Frontiers in Plant Science
#353
of 485 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,366 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 485 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.