↓ Skip to main content

Overexpression of the Prunus sogdiana NBS-LRR Subgroup Gene PsoRPM2 Promotes Resistance to the Root-Knot Nematode Meloidogyne incognita in Tobacco

Overview of attention for article published in Frontiers in Microbiology, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Overexpression of the Prunus sogdiana NBS-LRR Subgroup Gene PsoRPM2 Promotes Resistance to the Root-Knot Nematode Meloidogyne incognita in Tobacco
Published in
Frontiers in Microbiology, October 2017
DOI 10.3389/fmicb.2017.02113
Pubmed ID
Authors

Xiang Zhu, Kun Xiao, Haiyang Cui, Jianfang Hu

Abstract

Root-knot nematodes (RKNs), particularly Meloidogyne incognita, are the most devastating soil-borne pathogens that significantly affect the production of Prunus spp. fruit. RKN infection is difficult to control and consequently causes massive yield losses each year. However, several germplasms of wild Prunus spp. have been shown to display resistance to M. incognita. Consequently, both the isolation of novel plant resistance (R) genes and the characterization of their resistance mechanisms are important strategies for future disease control. R proteins require the co-chaperone protein HSP90-SGT1-RAR1 to achieve correct folding, maturation, and stabilization. Here, we used homologous cloning to isolate the R gene PsoRPM2 from the RKN-resistant species Prunus sogdiana. PsoRPM2 was found to encode a TIR-NB-LRR-type protein and react with significantly elevated PsoRPM2 expression levels in response to RKN infection. Transient expression assays indicated PsoRPM2 to be located in both the cytoplasm and the nucleus. Four transgenic tobacco lines that heterologously expressed PsoRPM2 showed enhanced resistance to M. incognita. Yeast two-hybrid analysis and bimolecular fluorescence complementation analysis demonstrated that both PsoRAR1 and PsoRPM2 interacted with PsoHSP90-1 and PsoSGT1, but not with one another. These results indicate that the observed PsoRPM2-mediated RKN resistance requires both PsoHSP90-1 and PsoSGT1, further suggesting that PsoRAR1 plays a functionally redundant role in the HSP90-SGT1-RAR1 co-chaperone.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 35%
Researcher 5 22%
Student > Doctoral Student 2 9%
Student > Bachelor 2 9%
Student > Ph. D. Student 1 4%
Other 3 13%
Unknown 2 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 43%
Biochemistry, Genetics and Molecular Biology 7 30%
Unspecified 1 4%
Business, Management and Accounting 1 4%
Chemistry 1 4%
Other 0 0%
Unknown 3 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 November 2017.
All research outputs
#18,576,855
of 23,008,860 outputs
Outputs from Frontiers in Microbiology
#19,542
of 25,108 outputs
Outputs of similar age
#251,925
of 328,935 outputs
Outputs of similar age from Frontiers in Microbiology
#440
of 555 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,108 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,935 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 555 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.