↓ Skip to main content

Transcriptome analyses of immune tissues from three Japanese frogs (genus Rana) reveals their utility in characterizing major histocompatibility complex class II

Overview of attention for article published in BMC Genomics, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
11 X users
facebook
1 Facebook page

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome analyses of immune tissues from three Japanese frogs (genus Rana) reveals their utility in characterizing major histocompatibility complex class II
Published in
BMC Genomics, December 2017
DOI 10.1186/s12864-017-4404-0
Pubmed ID
Authors

Quintin Lau, Takeshi Igawa, Ryuhei Minei, Tiffany A. Kosch, Yoko Satta

Abstract

In Japan and East Asia, endemic frogs appear to be tolerant or not susceptible to chytridiomycosis, a deadly amphibian disease caused by the chytrid fungus Batrachochytridium dendrobatidis (Bd). Japanese frogs may have evolved mechanisms of immune resistance to pathogens such as Bd. This study characterizes immune genes expressed in various tissues of healthy Japanese Rana frogs. We generated transcriptome data sets of skin, spleen and blood from three adult Japanese Ranidae frogs (Japanese brown frog Rana japonica, the montane brown frog Rana ornativentris, and Tago's brown frog Rana tagoi tagoi) as well as whole body of R. japonica and R. ornativentris tadpoles. From this, we identified tissue- and stage-specific differentially expressed genes; in particular, the spleen was most enriched for immune-related genes. A specific immune gene, major histocompatibility complex class IIB (MHC-IIB), was further characterized due to its role in pathogen recognition. We identified a total of 33 MHC-IIB variants from the three focal species (n = 7 individuals each), which displayed evolutionary signatures related to increased MHC variation, including balancing selection. Our supertyping analyses of MHC-IIB variants from Japanese frogs and previously studied frog species identified potential physiochemical properties of MHC-II that may be important for recognizing and binding chytrid-related antigens. This is one of the first studies to generate transcriptomic resources for Japanese frogs, and contributes to further understanding the immunogenetic factors associated with resistance to infectious diseases in amphibians such as chytridiomycosis. Notably, MHC-IIB supertyping analyses identified unique functional properties of specific MHC-IIB alleles that may partially contribute to Bd resistance, and such properties provide a springboard for future experimental validation.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 17%
Researcher 7 17%
Student > Ph. D. Student 6 15%
Student > Bachelor 5 12%
Professor > Associate Professor 3 7%
Other 4 10%
Unknown 9 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 49%
Biochemistry, Genetics and Molecular Biology 7 17%
Environmental Science 1 2%
Psychology 1 2%
Medicine and Dentistry 1 2%
Other 0 0%
Unknown 11 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 January 2018.
All research outputs
#4,493,100
of 23,015,156 outputs
Outputs from BMC Genomics
#1,837
of 10,697 outputs
Outputs of similar age
#98,380
of 441,975 outputs
Outputs of similar age from BMC Genomics
#50
of 238 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,697 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,975 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 238 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.