↓ Skip to main content

Localization of Engineered Vasculature within 3D Tissue Constructs

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Localization of Engineered Vasculature within 3D Tissue Constructs
Published in
Frontiers in Bioengineering and Biotechnology, January 2018
DOI 10.3389/fbioe.2018.00002
Pubmed ID
Authors

Shira Landau, Shaowei Guo, Shulamit Levenberg

Abstract

Today, in vitro vessel network systems frequently serve as models for investigating cellular and functional mechanisms underlying angiogenesis and vasculogenesis. Understanding the cues triggering the observed cell migration, organization, and differentiation, as well as the time frame of these processes, can improve the design of engineered microvasculature. Here, we present first evidence of the migration of endothelial cells into the depths of the scaffold, where they formed blood vessels surrounded by extracellular matrix and supporting cells. The supporting cells presented localization-dependent phenotypes, where cells adjacent to blood vessels displayed a more mature phenotype, with smooth muscle cell characteristics, whereas cells on the scaffold surface showed a pericyte-like phenotype. Yes-associated protein (YAP), a transcription activator of genes involved in cell proliferation and tissue growth, displayed spatially dependent expression, with cells on the surface showing more nuclear YAP than cells situated deeper within the scaffold.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 21%
Student > Master 8 14%
Researcher 8 14%
Student > Doctoral Student 6 10%
Student > Bachelor 4 7%
Other 6 10%
Unknown 14 24%
Readers by discipline Count As %
Engineering 19 33%
Biochemistry, Genetics and Molecular Biology 12 21%
Agricultural and Biological Sciences 5 9%
Medicine and Dentistry 4 7%
Social Sciences 2 3%
Other 4 7%
Unknown 12 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2021.
All research outputs
#14,373,275
of 23,018,998 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#1,949
of 6,719 outputs
Outputs of similar age
#240,757
of 441,076 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#17
of 34 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,719 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,076 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.