↓ Skip to main content

Comparison of Pretectal Genoarchitectonic Pattern between Quail and Chicken Embryos

Overview of attention for article published in Frontiers in Neuroanatomy, January 2011
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparison of Pretectal Genoarchitectonic Pattern between Quail and Chicken Embryos
Published in
Frontiers in Neuroanatomy, January 2011
DOI 10.3389/fnana.2011.00023
Pubmed ID
Authors

Paloma Merchán, Sylvia M. Bardet, Luis Puelles, José L. Ferran

Abstract

Regionalization of the central nervous system is controlled by local networks of transcription factors that establish and maintain the identities of neuroepithelial progenitor areas and their neuronal derivatives. The conserved cerebral Bauplan of vertebrates must result essentially from conserved patterns of developmentally expressed transcription factors. We have previously produced detailed molecular maps for the alar plate of prosomere 1 (the pretectal region) in chicken (Ferran et al., 2007, 2008, 2009). Here we compare the early molecular signature of the pretectum of two closely related avian species of the family Phasianidae, Coturnix japonica (Japanese quail) and Gallus gallus (chicken), aiming to test conservation of the described pattern at a microevolutionary level. We studied the developmental pretectal expression of Bhlhb4, Dbx1, Ebf1, Gata3, Gbx2, Lim1, Meis1, Meis2, Pax3, Pax6, Six3, Tal2, and Tcf7l2 (Tcf4) mRNA, using in situ hybridization, and PAX7 immunohistochemistry. The genoarchitectonic profile of individual pretectal domains and strata was produced, using comparable section planes. Remarkable conservation of the combinatorial genoarchitectonic code was observed, fundamented in a tripartite anteroposterior subdivision. However, we found that at corresponding developmental stages the pretectal region of G. gallus was approximately 30% larger than that of C. japonica, but seemed relatively less mature. Altogether, our results on a conserved genoarchitectonic pattern highlight the importance of early developmental gene networks that causally underlie the production of homologous derivatives in these two evolutionarily closely related species. The shared patterns probably apply to sauropsids in general, as well as to more distantly related vertebrate species.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 33 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 32%
Student > Ph. D. Student 7 21%
Student > Bachelor 3 9%
Professor 3 9%
Student > Postgraduate 3 9%
Other 3 9%
Unknown 4 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 53%
Neuroscience 6 18%
Unspecified 2 6%
Biochemistry, Genetics and Molecular Biology 1 3%
Arts and Humanities 1 3%
Other 2 6%
Unknown 4 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 February 2015.
All research outputs
#14,670,318
of 22,783,848 outputs
Outputs from Frontiers in Neuroanatomy
#699
of 1,159 outputs
Outputs of similar age
#138,397
of 180,646 outputs
Outputs of similar age from Frontiers in Neuroanatomy
#18
of 31 outputs
Altmetric has tracked 22,783,848 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,159 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.9. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 180,646 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.