↓ Skip to main content

The Histone Demethylase JMJD2A Modulates the Induction of Hypertrophy Markers in iPSC-Derived Cardiomyocytes

Overview of attention for article published in Frontiers in Genetics, February 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Histone Demethylase JMJD2A Modulates the Induction of Hypertrophy Markers in iPSC-Derived Cardiomyocytes
Published in
Frontiers in Genetics, February 2018
DOI 10.3389/fgene.2018.00014
Pubmed ID
Authors

Wendy Rosales, Fernando Lizcano

Abstract

The development of cardiovascular pathologies is partly attributed to epigenetic causes, including histone methylation, which appears to be an important marker in hearts that develop cardiac hypertrophy. Previous studies showed that the histone demethylase JMJD2A can regulate the hypertrophic process in murine cardiomyocytes. However, the influence of JMJD2A on cardiac hypertrophy in a human cardiomyocyte model is still poorly understood. In the present study, cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) were used. Hypertrophy was induced by angiotensin II and endothelin-1 (ET-1), and transfections were performed to overexpress JMJD2A and for small interfering RNA (siRNA)-induced silencing of JMJD2A. Gene expression analyses were determined using RT-PCR and Western blot. The expression levels of B-type natriuretic peptide (BNP), natriuretic peptide A (ANP), and beta myosin heavy chain (β-MHC) were increased by nearly 2-10-fold with ET-1 compared with the control. However, a higher level of JMJD2A and UTX was detected, whereas the level of JMJD2C was lower. When cardiomyocytes were transiently transfected with JMJD2A, an increase close to 150% in BNP was observed, and this increase was greater after treatment with ET-1. To verify the specificity of JMJD2A activity, a knockdown was performed by means of siRNA-JMJD2A, which led to a significant reduction in BNP. The involvement of JMJD2A suggests that histone-specific modifications are associated with genes encoding proteins that are actively transcribed during the hypertrophy process. Since BNP is closely related to JMJD2A expression, we suggest that there could be a direct influence of JMJD2A on the expression of BNP. These results may be studied further to reduce cardiac hypertrophy via the regulation of epigenetic modifiers.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 5 24%
Student > Bachelor 4 19%
Researcher 2 10%
Student > Master 2 10%
Professor 1 5%
Other 2 10%
Unknown 5 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 29%
Agricultural and Biological Sciences 3 14%
Chemistry 2 10%
Medicine and Dentistry 2 10%
Immunology and Microbiology 1 5%
Other 0 0%
Unknown 7 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 August 2022.
All research outputs
#13,313,598
of 23,189,371 outputs
Outputs from Frontiers in Genetics
#2,969
of 12,221 outputs
Outputs of similar age
#213,274
of 443,338 outputs
Outputs of similar age from Frontiers in Genetics
#45
of 109 outputs
Altmetric has tracked 23,189,371 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,221 research outputs from this source. They receive a mean Attention Score of 3.7. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,338 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 109 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.