↓ Skip to main content

An Improved Dynamic Model for the Respiratory Response to Exercise

Overview of attention for article published in Frontiers in Physiology, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Improved Dynamic Model for the Respiratory Response to Exercise
Published in
Frontiers in Physiology, February 2018
DOI 10.3389/fphys.2018.00069
Pubmed ID
Authors

Leidy Y. Serna, Miguel A. Mañanas, Alher M. Hernández, Roberto A. Rabinovich

Abstract

Respiratory system modeling has been extensively studied in steady-state conditions to simulate sleep disorders, to predict its behavior under ventilatory diseases or stimuli and to simulate its interaction with mechanical ventilation. Nevertheless, the studies focused on the instantaneous response are limited, which restricts its application in clinical practice. The aim of this study is double: firstly, to analyze both dynamic and static responses of two known respiratory models under exercise stimuli by using an incremental exercise stimulus sequence (to analyze the model responses when step inputs are applied) and experimental data (to assess prediction capability of each model). Secondly, to propose changes in the models' structures to improve their transient and stationary responses. The versatility of the resulting model vs. the other two is shown according to the ability to simulate ventilatory stimuli, like exercise, with a proper regulation of the arterial blood gases, suitable constant times and a better adjustment to experimental data. The proposed model adjusts the breathing pattern every respiratory cycle using an optimization criterion based on minimization of work of breathing through regulation of respiratory frequency.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 82 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 17 21%
Student > Ph. D. Student 9 11%
Student > Master 7 9%
Researcher 6 7%
Student > Doctoral Student 4 5%
Other 11 13%
Unknown 28 34%
Readers by discipline Count As %
Engineering 13 16%
Sports and Recreations 10 12%
Medicine and Dentistry 9 11%
Nursing and Health Professions 4 5%
Agricultural and Biological Sciences 3 4%
Other 7 9%
Unknown 36 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 February 2018.
All research outputs
#14,967,526
of 23,023,224 outputs
Outputs from Frontiers in Physiology
#5,739
of 13,773 outputs
Outputs of similar age
#254,709
of 437,841 outputs
Outputs of similar age from Frontiers in Physiology
#143
of 302 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,773 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,841 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 302 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.