↓ Skip to main content

Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma

Overview of attention for article published in Journal of Hematology & Oncology, February 2018
Altmetric Badge

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma
Published in
Journal of Hematology & Oncology, February 2018
DOI 10.1186/s13045-018-0575-7
Pubmed ID
Authors

Zhihong Zheng, Shengjun Fan, Jing Zheng, Wei Huang, Cristina Gasparetto, Nelson J. Chao, Jianda Hu, Yubin Kang

Abstract

Although current chemotherapy using bortezomib (Velcade) against multiple myeloma in adults has achieved significant responses and even remission, a majority of patients will develop acquired resistance to bortezomib. Increased thioredoxin level has been reported to be associated with carcinogenesis; however, the role of thioredoxin in bortezomib drug resistance of myeloma remains unclear. We generated several bortezomib-resistant myeloma cell lines by serially passaging with increased concentrations of bortezomib over a period of 1.5 years. Thioredoxin expression was measured by real-time PCR and western blot. The role of thioredoxin in the survival of bortezomib-resistant myeloma cells was determined by specific shRNA knockdown in vitro and in vivo. Thioredoxin inhibitor (PX12) was used to determine the effectiveness of thioredoxin inhibition in the treatment of bortezomib-resistant myeloma cells. The effect of thioredoxin inhibition on mitophagy induction was examined. The correlation of thioredoxin expression with patient overall survival was interrogated. Thioredoxin expression was significantly upregulated in bortezomib-resistant myeloma cells and the change correlated with the increase of bortezomib concentration. Thioredoxin gene knockdown using specific shRNA sensitized bortezomib-resistant myeloma cells to bortezomib efficiency in vitro and in vivo. Similarly, pharmacological inhibition with PX12 inhibited the growth of bortezomib-resistant myeloma cells and overcame bortezomib resistance in vitro and in vivo. Furthermore, inhibition of thioredoxin resulted in the activation of mitophagy and blockage of mitophagy prevented the effects of PX12 on bortezomib-resistant myeloma cells, indicating that mitophagy is the important molecular mechanism for the induction of cell death in bortezomib-resistant myeloma cells by PX12. Moreover, inhibition of thioredoxin resulted in downregulation of phosphorylated mTOR and ERK1/2. Finally, thioredoxin was overexpressed in primary myeloma cells isolated from bortezomib-resistant myeloma patients and overexpression of thioredoxin correlated with poor overall survival in patients with multiple myeloma. Our findings demonstrated that increased thioredoxin plays a critical role in bortezomib resistance in multiple myeloma through mitophagy inactivation and increased mTOR and ERK1/2 phosphorylation. Thioredoxin provides a potential target for clinical therapeutics against multiple myeloma, particularly for bortezomib-resistant/refractory myeloma patients.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 7 13%
Student > Ph. D. Student 7 13%
Researcher 6 12%
Student > Bachelor 3 6%
Other 3 6%
Other 8 15%
Unknown 18 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 23%
Unspecified 7 13%
Medicine and Dentistry 4 8%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Agricultural and Biological Sciences 2 4%
Other 5 10%
Unknown 19 37%