↓ Skip to main content

Ferric Sulfate and Proline Enhance Heavy-Metal Tolerance of Halophilic/Halotolerant Soil Microorganisms and Their Bioremediation Potential for Spilled-Oil Under Multiple Stresses

Overview of attention for article published in Frontiers in Microbiology, March 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

blogs
1 blog

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ferric Sulfate and Proline Enhance Heavy-Metal Tolerance of Halophilic/Halotolerant Soil Microorganisms and Their Bioremediation Potential for Spilled-Oil Under Multiple Stresses
Published in
Frontiers in Microbiology, March 2018
DOI 10.3389/fmicb.2018.00394
Pubmed ID
Authors

Dina M Al-Mailem, Mohamed Eliyas, Samir S Radwan

Abstract

The aim of this study was to explore the heavy-metal resistance and hydrocarbonoclastic potential of microorganisms in a hypersaline soil. For this, hydrocarbonoclastic microorganisms were counted on a mineral medium with oil vapor as a sole carbon source in the presence of increasing concentrations of ZnSO4, HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4. The colony-forming units counted decreased in number from about 150 g-1 on the heavy-metal-free medium to zero units on media with 40-100 mg l-1 of HgCl2, CdSO4, PbNO3, or Na2HAsO4. On media with CuSO4 or ZnSO4 on the other hand, numbers increased first reaching maxima on media with 50 mg l-1 CuSO4 and 90 mg l-1 ZnSO4. Higher concentrations reduced the numbers, which however, still remained considerable. Pure microbial isolates in cultures tolerated 200-1600 mg l-1 of HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4 in the absence of crude oil. In the presence of oil vapor, the isolates tolerated much lower concentrations of the heavy metals, only 10-80 mg l-1. The addition of 10 Fe2(SO4)3 and 200 mg l-1 proline (by up to two- to threefold) enhanced the tolerance of several isolates to heavy metals, and consequently their potential for oil biodegradation in their presence. The results are useful in designing bioremediation technologies for oil spilled in hypersaline areas.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 6 21%
Student > Bachelor 5 18%
Student > Postgraduate 3 11%
Student > Ph. D. Student 2 7%
Lecturer 1 4%
Other 4 14%
Unknown 7 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 29%
Agricultural and Biological Sciences 4 14%
Environmental Science 2 7%
Immunology and Microbiology 2 7%
Unspecified 1 4%
Other 3 11%
Unknown 8 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 March 2018.
All research outputs
#5,810,205
of 23,025,074 outputs
Outputs from Frontiers in Microbiology
#5,522
of 25,149 outputs
Outputs of similar age
#102,038
of 332,611 outputs
Outputs of similar age from Frontiers in Microbiology
#206
of 591 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 25,149 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,611 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 591 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.