↓ Skip to main content

Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery

Overview of attention for article published in Frontiers in Microbiology, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
1 news outlet
twitter
10 X users
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
106 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery
Published in
Frontiers in Microbiology, March 2018
DOI 10.3389/fmicb.2018.00174
Pubmed ID
Authors

Yaron Caspi, Cees Dekker

Abstract

Cell division in most prokaryotes is mediated by the well-studied fts genes, with FtsZ as the principal player. In many archaeal species, however, division is orchestrated differently. The Crenarchaeota phylum of archaea features the action of the three proteins, CdvABC. This Cdv system is a unique and less-well-studied division mechanism that merits closer inspection. In vivo, the three Cdv proteins form a composite band that contracts concomitantly with the septum formation. Of the three Cdv proteins, CdvA is the first to be recruited to the division site, while CdvB and CdvC are thought to participate in the active part of the Cdv division machinery. Interestingly, CdvB shares homology with a family of proteins from the eukaryotic ESCRT-III complex, and CdvC is a homolog of the eukaryotic Vps4 complex. These two eukaryotic complexes are key factors in the endosomal sorting complex required for transport (ESCRT) pathway, which is responsible for various budding processes in eukaryotic cells and which participates in the final stages of division in Metazoa. There, ESCRT-III forms a contractile machinery that actively cuts the membrane, whereas Vps4, which is an ATPase, is necessary for the turnover of the ESCRT membrane-abscission polymers. In contrast to CdvB and CdvC, CdvA is unique to the archaeal Crenarchaeota and Thaumarchaeota phyla. The Crenarchaeota division mechanism has often been suggested to represent a simplified version of the ESCRT division machinery thus providing a model system to study the evolution and mechanism of cell division in higher organisms. However, there are still many open questions regarding this parallelism and the division mechanism of Crenarchaeota. Here, we review the existing data on the role of the Cdv proteins in the division process of Crenarchaeota as well as concisely review the ESCRT system in eukaryotes. We survey the similarities and differences between the division and abscission mechanisms in the two cases. We suggest that the Cdv system functions differently in archaea than ESCRT does in eukaryotes, and that, unlike the eukaryotic case, the Cdv system's main function may be related to surplus membrane invagination and cell-wall synthesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 106 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 106 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 21%
Student > Master 14 13%
Researcher 13 12%
Student > Bachelor 8 8%
Professor 5 5%
Other 11 10%
Unknown 33 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 35 33%
Agricultural and Biological Sciences 17 16%
Immunology and Microbiology 7 7%
Physics and Astronomy 2 2%
Earth and Planetary Sciences 2 2%
Other 9 8%
Unknown 34 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 June 2024.
All research outputs
#2,224,681
of 26,561,175 outputs
Outputs from Frontiers in Microbiology
#1,555
of 30,408 outputs
Outputs of similar age
#44,883
of 350,411 outputs
Outputs of similar age from Frontiers in Microbiology
#47
of 585 outputs
Altmetric has tracked 26,561,175 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 30,408 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 350,411 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 585 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.