↓ Skip to main content

Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation

Overview of attention for article published in Frontiers in Computational Neuroscience, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
7 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation
Published in
Frontiers in Computational Neuroscience, March 2018
DOI 10.3389/fncom.2018.00016
Pubmed ID
Authors

Luozheng Li, Yuanyuan Mi, Wenhao Zhang, Da-Hui Wang, Si Wu

Abstract

Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural encoding. We believe that our study shed lights on the mechanism underlying the efficient neural information processing via adaptation.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Researcher 4 18%
Student > Master 4 18%
Student > Bachelor 1 5%
Student > Doctoral Student 1 5%
Other 0 0%
Unknown 7 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 14%
Engineering 3 14%
Neuroscience 3 14%
Psychology 2 9%
Social Sciences 1 5%
Other 2 9%
Unknown 8 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 April 2018.
All research outputs
#13,066,779
of 23,025,074 outputs
Outputs from Frontiers in Computational Neuroscience
#482
of 1,355 outputs
Outputs of similar age
#159,991
of 330,017 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#13
of 25 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,355 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,017 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.